scholarly journals A Strategy to Elicit M2e-Specific Antibodies Using a Recombinant H7N9 Live Attenuated Influenza Vaccine Expressing Multiple M2e Tandem Repeats

Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 133
Author(s):  
Daria Mezhenskaya ◽  
Irina Isakova-Sivak ◽  
Tatiana Kotomina ◽  
Victoria Matyushenko ◽  
Min-Chul Kim ◽  
...  

Influenza viruses remain a serious public health problem. Vaccination is the most effective way to prevent the disease; however, seasonal influenza vaccines demonstrate low or no effectiveness against antigenically drifted and newly emerged influenza viruses. Different strategies of eliciting immune responses against conserved parts of various influenza virus proteins are being developed worldwide. We constructed a universal live attenuated influenza vaccine (LAIV) candidate with enhanced breadth of protection by modifying H7N9 LAIV by incorporating four epitopes of M2 protein extracellular part into its hemagglutinin molecule. The new recombinant H7N9+4M2e vaccine induced anti-M2e antibody responses and demonstrated increased protection against heterosubtypic challenge viruses in direct and serum passive protection studies, compared to the classical H7N9 LAIV. The results of our study suggest that the H7N9+4M2e warrants further investigation in pre-clinical and phase 1 clinical trials.

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S970-S970
Author(s):  
Vivek Shinde ◽  
Rongman Cai ◽  
Joyce S Plested ◽  
Bin Zhou ◽  
Haixia Zhou ◽  
...  

Abstract Background We developed a recombinant saponin-adjuvanted (Matrix-M1) quadrivalent hemagglutinin nanoparticle influenza vaccine (qNIV; NanoFlu) for older adults to address two impediments to efficacy of current, predominantly egg-derived, seasonal influenza vaccines: (1) limited protection against antigenic drift variants, particularly H3N2 viruses; and (2) antigenic mismatch between vaccine and circulating strains due to egg-adaptive mutations arising during manufacturing. In a prior Phase 1 trial, we showed that qNIV induced robust, broadly cross-reactive antibody responses against multiple antigenically drifted H3N2 viruses, which were 47–64% better than the egg-derived comparator trivalent high-dose inactivated influenza vaccine (IIV3-HD; Fluzone-High Dose). We undertook a Phase 2 trial to optimize the formulation of qNIV, and to compare qNIV immune responses to those of IIV3-HD and quadrivalent recombinant influenza vaccine (RIV4; FluBlok). Methods In this phase 2 dose and formulation finding RCT, we randomized 1,375 subjects aged ≥65 years to be immunized with 1 of 7 test vaccines: 5 different formulations of qNIV, IIV3-HD, or RIV4; and assessed wild-type hemagglutinin-inhibition (wt-HAI) and microneutralization (wt-MN) antibody responses (Day 0/28/56). Results Matrix-M1-adjuvanted qNIV induced 15–29% higher wt-HAI titers across 5 vaccine homologous or drifted H3N2 strains at Day 28 relative to unadjuvanted qNIV (statistically significantly superior for 5 of 6 strains tested). At Day 28, several qNIV formulations induced significantly superior wt-HAI titers vs. IIV3-HD (39–45%, 17–22%, and 44–48% greater titers for homologous A/Singapore/INFIMH-16–0019/2016—H3N2, historic-drifted A/Switzerland/9715293/2013—H3N2, and forward-drifted A/Wisconsin/19/2017—H3N2, respectively); and comparable HAI titers vs. RIV4. Wt-MN and wt-HAI data showed concordant patterns across treatment groups. Conclusion qNIV induced superior wt-HAI antibody responses vs. IIV3-HD against homologous or drifted H3N2 viruses and similar responses to RIV4. qNIV may address several critical challenges confronting current egg-derived influenza vaccines, especially in the older adult population. Disclosures All authors: No reported disclosures.


2018 ◽  
Vol 92 (22) ◽  
Author(s):  
Nicole Darricarrère ◽  
Svetlana Pougatcheva ◽  
Xiaochu Duan ◽  
Rebecca S. Rudicell ◽  
Te-Hui Chou ◽  
...  

ABSTRACT The efficacy of current seasonal influenza vaccines varies greatly, depending on the match to circulating viruses. Although most vaccines elicit strain-specific responses, some present cross-reactive epitopes that elicit antibodies against diverse viruses and remain unchanged and effective for several years. To determine whether combinations of specific H1 hemagglutinin (HA) antigens stimulate immune responses that protect against diverse H1 influenza viruses, we evaluated the antibody responses elicited by HA-ferritin nanoparticles derived from six evolutionarily divergent H1 sequences and two computationally optimized broadly reactive antigen (COBRA) HA antigens. Humoral responses were assessed against a panel of 16 representative influenza virus strains from the past 80 years. HAs from the strains A/NewCaledonia/20/1999 (NC99), A/California/04/2009 (CA09), A/HongKong/117/1977 (HK77), COBRA X6, or P1 elicited neutralization against diverse strains, and a combination of three wild-type HA or two COBRA HA nanoparticles conferred significant additional breadth beyond that observed with any individual strain. Therefore, combinations of H1 HAs may constitute a pan-H1 influenza vaccine. IMPORTANCE Seasonal influenza vaccines elicit strain-specific immune responses designed to protect against circulating viruses. Because these vaccines often show limited efficacy, the search for a broadly protective seasonal vaccine remains a priority. Among different influenza virus subtypes, H1N1 has long been circulating in humans and has caused pandemic outbreaks. In order to assess the potential of a multivalent HA combination vaccine to improve the breadth of protection against divergent H1N1 viruses, HA-ferritin nanoparticles were made and evaluated in mice against a panel of historical and contemporary influenza virus strains. Trivalent combinations of H1 nanoparticles improved the breadth of immunity against divergent H1 influenza viruses.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
James D. Allen ◽  
Ted M. Ross

AbstractWhile vaccines remain the best tool for preventing influenza virus infections, they have demonstrated low to moderate effectiveness in recent years. Seasonal influenza vaccines typically consist of wild-type influenza A and B viruses that are limited in their ability to elicit protective immune responses against co-circulating influenza virus variant strains. Improved influenza virus vaccines need to elicit protective immune responses against multiple influenza virus drift variants within each season. Broadly reactive vaccine candidates potentially provide a solution to this problem, but their efficacy may begin to wane as influenza viruses naturally mutate through processes that mediates drift. Thus, it is necessary to develop a method that commercial vaccine manufacturers can use to update broadly reactive vaccine antigens to better protect against future and currently circulating viral variants. Building upon the COBRA technology, nine next-generation H3N2 influenza hemagglutinin (HA) vaccines were designed using a next generation algorithm and design methodology. These next-generation broadly reactive COBRA H3 HA vaccines were superior to wild-type HA vaccines at eliciting antibodies with high HAI activity against a panel of historical and co-circulating H3N2 influenza viruses isolated over the last 15 years, as well as the ability to neutralize future emerging H3N2 isolates.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kosuke Miyauchi ◽  
Yu Adachi ◽  
Keisuke Tonouchi ◽  
Taiki Yajima ◽  
Yasuyo Harada ◽  
...  

AbstractInfluenza viruses are a major public health problem. Vaccines are the best available countermeasure to induce effective immunity against infection with seasonal influenza viruses; however, the breadth of antibody responses in infection versus vaccination is quite different. Here, we show that nasal infection controls two sequential processes to induce neutralizing IgG antibodies recognizing the hemagglutinin (HA) of heterotypic strains. The first is viral replication in the lung, which facilitates exposure of shared epitopes that are otherwise hidden from the immune system. The second process is the germinal center (GC) response, in particular, IL-4 derived from follicular helper T cells has an essential role in the expansion of rare GC-B cells recognizing the shared epitopes. Therefore, the combination of exposure of the shared epitopes and efficient proliferation of GC-B cells is critical for generating broadly-protective antibodies. These observations provide insight into mechanisms promoting broad protection from virus infection.


2015 ◽  
Vol 212 (8) ◽  
pp. 1270-1278 ◽  
Author(s):  
Jessica L. Halliley ◽  
Surender Khurana ◽  
Florian Krammer ◽  
Theresa Fitzgerald ◽  
Elizabeth M. Coyle ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. e0206837 ◽  
Author(s):  
Katherine V. Houser ◽  
Galina V. Yamshchikov ◽  
Abbie R. Bellamy ◽  
Jeanine May ◽  
Mary E. Enama ◽  
...  

mSphere ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Z. Beau Reneer ◽  
Amanda L. Skarlupka ◽  
Parker J. Jamieson ◽  
Ted M. Ross

ABSTRACT Influenza vaccines have traditionally been tested in naive mice and ferrets. However, humans are first exposed to influenza viruses within the first few years of their lives. Therefore, there is a pressing need to test influenza virus vaccines in animal models that have been previously exposed to influenza viruses before being vaccinated. In this study, previously described H2 computationally optimized broadly reactive antigen (COBRA) hemagglutinin (HA) vaccines (Z1 and Z5) were tested in influenza virus “preimmune” ferret models. Ferrets were infected with historical, seasonal influenza viruses to establish preimmunity. These preimmune ferrets were then vaccinated with either COBRA H2 HA recombinant proteins or wild-type H2 HA recombinant proteins in a prime-boost regimen. A set of naive preimmune or nonpreimmune ferrets were also vaccinated to control for the effects of the multiple different preimmunities. All of the ferrets were then challenged with a swine H2N3 influenza virus. Ferrets with preexisting immune responses influenced recombinant H2 HA-elicited antibodies following vaccination, as measured by hemagglutination inhibition (HAI) and classical neutralization assays. Having both H3N2 and H1N1 immunological memory regardless of the order of exposure significantly decreased viral nasal wash titers and completely protected all ferrets from both morbidity and mortality, including the mock-vaccinated ferrets in the group. While the vast majority of the preimmune ferrets were protected from both morbidity and mortality across all of the different preimmunities, the Z1 COBRA HA-vaccinated ferrets had significantly higher antibody titers and recognized the highest number of H2 influenza viruses in a classical neutralization assay compared to the other H2 HA vaccines. IMPORTANCE H1N1 and H3N2 influenza viruses have cocirculated in the human population since 1977. Nearly every human alive today has antibodies and memory B and T cells against these two subtypes of influenza viruses. H2N2 influenza viruses caused the 1957 global pandemic and people born after 1968 have never been exposed to H2 influenza viruses. It is quite likely that a future H2 influenza virus could transmit within the human population and start a new global pandemic, since the majority of people alive today are immunologically naive to viruses of this subtype. Therefore, an effective vaccine for H2 influenza viruses should be tested in an animal model with previous exposure to influenza viruses that have circulated in humans. Ferrets were infected with historical influenza A viruses to more accurately mimic the immune responses in people who have preexisting immune responses to seasonal influenza viruses. In this study, preimmune ferrets were vaccinated with wild-type (WT) and COBRA H2 recombinant HA proteins in order to examine the effects that preexisting immunity to seasonal human influenza viruses have on the elicitation of broadly cross-reactive antibodies from heterologous vaccination.


Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 296
Author(s):  
Irina Kiseleva ◽  
Irina Isakova-Sivak ◽  
Marina Stukova ◽  
Marianna Erofeeva ◽  
Svetlana Donina ◽  
...  

This study describes a double-blind randomized placebo-controlled phase I clinical trial in healthy adults of a new potential pandemic H7N9 live attenuated influenza vaccine (LAIV) based on the human influenza virus of Yangtze River Delta hemagglutinin lineage (ClinicalTrials.gov Identifier: NCT03739229). Two doses of H7N9 LAIV or placebo were administered intranasally to 30 and 10 subjects, respectively. The vaccine was well-tolerated and not associated with increased rates of adverse events or with any serious adverse events. Vaccine virus was detected in nasal swabs during the 6 days after vaccination or revaccination. A lower frequency of shedding was observed after the second vaccination. Twenty-five clinical viral isolates obtained after the first and second doses of vaccine retained the temperature-sensitive and cold-adapted phenotypic characteristics of LAIV. There was no confirmed transmission of the vaccine strain from vaccinees to placebo recipients. After the two H7N9 LAIV doses, an immune response was observed in 96.6% of subjects in at least one of the assays conducted.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Zanele Ditse ◽  
Nonhlanhla N. Mkhize ◽  
Michael Yin ◽  
Michael Keefer ◽  
David C. Montefiori ◽  
...  

ABSTRACT Analysis of breakthrough HIV-1 infections could elucidate whether prior vaccination primes relevant immune responses. Here, we measured HIV-specific antibody responses in 14 South African volunteers who acquired HIV infection after participating in phase 1/2 trials of envelope-containing immunogens. Serum samples were collected annually following HIV-1 infection from participants in trials HVTN 073 (subtype C, DNA/MVA, phase 1 trial, n = 1), HVTN 086 (subtype C, DNA/MVA/gp140 protein, phase 1 trial, n = 2), and HVTN 204 (multisubtype, DNA/adenovirus serotype 5 [Ad5], phase 2 trial, n = 7) and 4 placebo recipients. Binding and neutralizing antibody responses to Env proteins and peptides were determined pre- and post-HIV infection using an enzyme-linked immunosorbent assay and the TZM-bl cell neutralization assay, respectively. HIV-infected South African individuals served as unvaccinated controls. Binding antibodies to gp41, V3, V2, the membrane-proximal external region (MPER), and the CD4 binding site were detected from the first year of HIV-1 subtype C infection, and the levels were similar in vaccinated and placebo recipients. Neutralizing antibody responses against tier 1A viruses were detected in all participants, with the highest titers being to a subtype C virus, MW965.26. No responses were observed just prior to infection, indicating that vaccine-primed HIV-specific antibodies had waned. Sporadic neutralization activity against tier 2 isolates was observed after 2 to 3 years of HIV infection, but these responses were similar in the vaccinated and placebo groups as well as the unvaccinated controls. Our data suggest that prior vaccination with these immunogens did not alter the antibody responses to HIV-1 infection, nor did it accelerate the development of HIV neutralization breadth. IMPORTANCE There is a wealth of information on HIV-specific vaccine-induced immune responses among HIV-uninfected participants; however, data on immune responses among participants who acquire HIV after vaccination are limited. Here we show that HIV-specific binding antibody responses in individuals with breakthrough HIV infections were not affected by prior vaccination with HIV envelope-containing immunogens. We also found that these vectored vaccines did not prime tier 2 virus-neutralizing antibody responses, which are thought to be required for prevention against HIV acquisition, or accelerate the development of neutralization breadth. Although this study is limited, such studies can provide insights into whether vaccine-elicited antibody responses are boosted by HIV infection to acquire broader neutralizing activity, which may help to identify antigens relevant to the design of more effective vaccines.


Sign in / Sign up

Export Citation Format

Share Document