scholarly journals Experimental and Clinical Applications of Red and Near-Infrared Photobiomodulation on Endothelial Dysfunction: A Review

Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 274 ◽  
Author(s):  
Esteban Colombo ◽  
Antonio Signore ◽  
Stefano Aicardi ◽  
Angelina Zekiy ◽  
Anatoliy Utyuzh ◽  
...  

Background: Under physiological conditions, endothelial cells are the main regulator of arterial tone homeostasis and vascular growth, sensing and transducing signals between tissue and blood. Disease risk factors can lead to their unbalanced homeostasis, known as endothelial dysfunction. Red and near-infrared light can interact with animal cells and modulate their metabolism upon interaction with mitochondria’s cytochromes, which leads to increased oxygen consumption, ATP production and ROS, as well as to regulate NO release and intracellular Ca2+ concentration. This medical subject is known as photobiomodulation (PBM). We present a review of the literature on the in vitro and in vivo effects of PBM on endothelial dysfunction. Methods: A search strategy was developed consistent with the PRISMA statement. The PubMed, Scopus, Cochrane, and Scholar electronic databases were consulted to search for in vitro and in vivo studies. Results: Fifty out of >12,000 articles were selected. Conclusions: The PBM can modulate endothelial dysfunction, improving inflammation, angiogenesis, and vasodilatation. Among the studies, 808 nm and 18 J (0.2 W, 2.05 cm2) intracoronary irradiation can prevent restenosis as well as 645 nm and 20 J (0.25 W, 2 cm2) can stimulate angiogenesis. PBM can also support hypertension cure. However, more extensive randomised controlled trials are necessary.

2020 ◽  
Vol 6 (44) ◽  
pp. eabb6165
Author(s):  
Lukas Pfeifer ◽  
Nong V. Hoang ◽  
Maximilian Scherübl ◽  
Maxim S. Pshenichnikov ◽  
Ben L. Feringa

Light-controlled artificial molecular machines hold tremendous potential to revolutionize molecular sciences as autonomous motion allows the design of smart materials and systems whose properties can respond, adapt, and be modified on command. One long-standing challenge toward future applicability has been the need to develop methods using low-energy, low-intensity, near-infrared light to power these nanomachines. Here, we describe a rotary molecular motor sensitized by a two-photon absorber, which efficiently operates under near-infrared light at intensities and wavelengths compatible with in vivo studies. Time-resolved spectroscopy was used to gain insight into the mechanism of energy transfer to the motor following initial two-photon excitation. Our results offer prospects toward in vitro and in vivo applications of artificial molecular motors.


2021 ◽  
Author(s):  
Xue Wang ◽  
Lili Xuan ◽  
Ying Pan

Melanoma is one of the deadliest forms of cancer, for which therapeutic regimens are usually limited by the development of resistance. Here, we fabricated the Fe3O4 nanoparticle clusters (NPCs) that have drawn widespread attention and investigated their role in the treatment of melanoma by photothermal therapy (PTT). Transmission electron microscopy imaging shows that our synthesized NPCs are spherically shaped with an averaged diameter of 329.2 nm. They are highly absorptive at the near-infrared 808 nm wavelength and efficient at converting light into local heat. In vitro experiments using light-field microscopy and MTT assay showed that Fe3O4 NPCs, in conjunction with near-infrared irradiation, effectively ablated A375 melanoma cells by inducing overt apoptosis. Consistently, in vivo studies using BALB/c mice found that intratumoral administration of Fe3O4 NPCs and concomitant in situ exposure to near-infrared light significantly inhibited growth of implanted tumor xenografts. Finally, we revealed, by experimental approaches including semi-quantitative PCR, western blot and immunohistochemistry, the heat shock protein HSP70 to be upregulated in response to PTT, suggesting this chaperone protein could be a plausible underlying mechanism for the observed therapeutic outcome. Altogether, our results highlight the promise of Fe3O4 NPCs as a new PTT option to treat melanoma.


2019 ◽  
Vol 116 (41) ◽  
pp. 20296-20302 ◽  
Author(s):  
Zhixuan Zhou ◽  
Jiangping Liu ◽  
Juanjuan Huang ◽  
Thomas W. Rees ◽  
Yiliang Wang ◽  
...  

Photodynamic therapy (PDT) is a treatment procedure that relies on cytotoxic reactive oxygen species (ROS) generated by the light activation of a photosensitizer. The photophysical and biological properties of photosensitizers are vital for the therapeutic outcome of PDT. In this work a 2D rhomboidal metallacycle and a 3D octahedral metallacage were designed and synthesized via the coordination-driven self-assembly of a Ru(II)-based photosensitizer and complementary Pt(II)-based building blocks. The metallacage showed deep-red luminescence, a large 2-photon absorption cross-section, and highly efficient ROS generation. The metallacage was encapsulated into an amphiphilic block copolymer to form nanoparticles to encourage cell uptake and localization. Upon internalization into cells, the nanoparticles selectively accumulate in the lysosomes, a favorable location for PDT. The nanoparticles are almost nontoxic in the dark, and can efficiently destroy tumor cells via the generation of ROS in the lysosomes under 2-photon near-infrared light irradiation. The superb PDT efficacy of the metallacage-containing nanoparticles was further validated by studies on 3D multicellular spheroids (MCS) and in vivo studies on A549 tumor-bearing mice.


2020 ◽  
Vol 9 (2) ◽  
pp. 420
Author(s):  
Ana Marmaneu-Menero ◽  
José Enrique Iranzo-Cortés ◽  
Teresa Almerich-Torres ◽  
José Carmelo Ortolá-Síscar ◽  
José María Montiel-Company ◽  
...  

The objective of the study is to analyse the available evidence for the validity of the transillumination method in the diagnosis of interproximal caries. Bibliographic searches were carried out in three data bases (PubMed, Embase, Scopus) with the key words “Transillumination AND caries”. A total of 11 studies were selected for the qualitative analysis and meta-analysis. In the qualitative analysis, both in vivo and in vitro studies were included. The gold standards were tomography, digital radiography, and clinical visual diagnosis. The meta-analysis determined the sensitivity, specificity, and area below the ROC curve relative to the transillumination method in the diagnosis of caries in dentine. Meta-analysis results obtained for transillumination gave a sensitivity value of 0.69 (confidence interval: 0.54–0.81), a specificity value of 0.89 (confidence interval: 0.61–0.98), while giving an AUC value of 0.79 (confidence interval: 0.67–0.87). Transillumination is a method offering moderate validity in the diagnosis of carious lesions in dentine, there is no strong evidence that may enable us to affirm that transillumination may fully substitute X-rays in the complementary diagnosis of carious lesions


Nanomedicine ◽  
2019 ◽  
Vol 14 (16) ◽  
pp. 2189-2207
Author(s):  
Yiming Yu ◽  
Li Zhang ◽  
Miao Wang ◽  
Zhe Yang ◽  
Leping Lin ◽  
...  

Aim: To develop a H2O2/near-infrared (NIR) laser light-responsive nanoplatform (manganese-doped Prussian blue@polypyrrole [MnPB@PPy]) for synergistic chemo/photothermal cancer theranostics. Materials & methods: Doxorubicin (DOX) was loaded onto the surface of polypyrrole shells. The in vitro and in vivo MRI performance and anticancer effects of these nanoparticles (NPs) were evaluated. Results: The MnPB@PPy NPs could not only generate heat under NIR laser irradiation for cancer photothermal therapy but also act as an excellent MRI contrast agent. The loaded DOX could be triggered to release by both NIR light and H2O2 to enhance synergistic therapeutic efficacy. The antitumor effects were confirmed by in vitro cellular cytotoxicity assays and in vivo treatment in a xenograft tumor model. Conclusion: The designed H2O2/NIR light-responsive MnPB@PPy-DOX NPs hold great potential for future biomedical applications.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 62
Author(s):  
Daniela Valenti ◽  
Fiorenza Stagni ◽  
Marco Emili ◽  
Sandra Guidi ◽  
Renata Bartesaghi ◽  
...  

Down syndrome (DS), a major genetic cause of intellectual disability, is characterized by numerous neurodevelopmental defects. Previous in vitro studies highlighted a relationship between bioenergetic dysfunction and reduced neurogenesis in progenitor cells from the Ts65Dn mouse model of DS, suggesting a critical role of mitochondrial dysfunction in neurodevelopmental alterations in DS. Recent in vivo studies in Ts65Dn mice showed that neonatal supplementation (Days P3–P15) with the polyphenol 7,8-dihydroxyflavone (7,8-DHF) fully restored hippocampal neurogenesis. The current study was aimed to establish whether brain mitochondrial bioenergetic defects are already present in Ts65Dn pups and whether early treatment with 7,8-DHF positively impacts on mitochondrial function. In the brain and cerebellum of P3 and P15 Ts65Dn pups we found a strong impairment in the oxidative phosphorylation apparatus, resulting in a deficit in mitochondrial ATP production and ATP content. Administration of 7,8-DHF (dose: 5 mg/kg/day) during Days P3–P15 fully restored bioenergetic dysfunction in Ts65Dn mice, reduced the levels of oxygen radicals and reinstated the hippocampal levels of PGC-1α. No pharmacotherapy is available for DS. From current findings, 7,8-DHF emerges as a treatment with a good translational potential for improving mitochondrial bioenergetics and, thus, mitochondria-linked neurodevelopmental alterations in DS.


Nanomedicine ◽  
2019 ◽  
Vol 14 (17) ◽  
pp. 2339-2353 ◽  
Author(s):  
Wenli Qiu ◽  
Huifeng Zhang ◽  
Xiao Chen ◽  
Lina Song ◽  
Wenjing Cui ◽  
...  

Aim: Biomarker-targeted nanocarrier holds promise for early diagnosis and effective therapy of cancer. Materials & methods: This work successfully designs and evaluates GPC1-targeted, gemcitabine (GEM)-loaded multifunctional gold nanocarrier for near-infrared fluorescence (NIRF)/MRI and targeted chemotherapy against pancreatic cancer in vitro and in vivo. Results: Blood biochemical and histological analyses show that the in vivo toxicity of GPC1-GEM-nanoparticles (NPs) was negligible. Both in vitro and in vivo studies demonstrate that GPC1-GEM-NPs can be used as NIRF/MR contrast agent for pancreatic cancer detection. Treatment of xenografted mice with GPC1-GEM-NPs shows a higher tumor inhibitory effect compared with controls. Conclusion: This novel theranostic nanoplatform provides early diagnostic and effective therapeutic potential for pancreatic cancer.


2018 ◽  
Vol 115 (26) ◽  
pp. 6632-6637 ◽  
Author(s):  
He Ding ◽  
Lihui Lu ◽  
Zhao Shi ◽  
Dan Wang ◽  
Lizhu Li ◽  
...  

Optical upconversion that converts infrared light into visible light is of significant interest for broad applications in biomedicine, imaging, and displays. Conventional upconversion materials rely on nonlinear light-matter interactions, exhibit incidence-dependent efficiencies, and require high-power excitation. We report an infrared-to-visible upconversion strategy based on fully integrated microscale optoelectronic devices. These thin-film, ultraminiaturized devices realize near-infrared (∼810 nm) to visible [630 nm (red) or 590 nm (yellow)] upconversion that is linearly dependent on incoherent, low-power excitation, with a quantum yield of ∼1.5%. Additional features of this upconversion design include broadband absorption, wide-emission spectral tunability, and fast dynamics. Encapsulated, freestanding devices are transferred onto heterogeneous substrates and show desirable biocompatibilities within biological fluids and tissues. These microscale devices are implanted in behaving animals, with in vitro and in vivo experiments demonstrating their utility for optogenetic neuromodulation. This approach provides a versatile route to achieve upconversion throughout the entire visible spectral range at lower power and higher efficiency than has previously been possible.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1242
Author(s):  
Mariana Amaral ◽  
Adília J. Charmier ◽  
Ricardo A. Afonso ◽  
José Catarino ◽  
Pedro Faísca ◽  
...  

Anaplastic thyroid carcinoma (ATC) is a very rare subtype of thyroid carcinoma and one of the most lethal malignancies. Poor prognosis is mainly associated with its undifferentiated nature, inoperability, and failing to respond to the typically used therapies for thyroid cancer. Photothermal Therapy (PTT) entails using light to increase tissues’ temperature, leading to hyperthermia-mediated cell death. Tumours are more susceptible to heat as they are unable to dissipate it. By using functionalized gold nanoparticles (AuNPs) that transform light energy into heat, it is possible to target the heat to the tumour. This study aims to formulate ATC-targeted AuNPs able to convert near-infrared light into heat, for PTT of ATC. Different AuNPs were synthetized and coated. Size, morphology, and surface plasmon resonances band were determined. The optimized coated-AuNPs were then functionalized with ligands to assess ATC’s specificity. Safety, efficacy, and selectivity were assessed in vitro. The formulations were deemed safe when not irradiated (>70% cell viability) and selective for ATC. However, when irradiated, holo-transferrin-AuNPs were the most cytotoxic (22% of cell viability). The biodistribution and safety of this formulation was assessed in vivo. Overall, this novel formulation appears to be a highly promising approach to evaluate in a very near future.


Sign in / Sign up

Export Citation Format

Share Document