scholarly journals Endothelial Barrier Function and Leukocyte Transmigration in Atherosclerosis

Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 328
Author(s):  
Thijs J. Sluiter ◽  
Jaap D. van Buul ◽  
Stephan Huveneers ◽  
Paul H. A. Quax ◽  
Margreet R. de Vries

The vascular endothelium is a highly specialized barrier that controls passage of fluids and migration of cells from the lumen into the vessel wall. Endothelial cells assist leukocytes to extravasate and despite the variety in the specific mechanisms utilized by different leukocytes to cross different vascular beds, there is a general principle of capture, rolling, slow rolling, arrest, crawling, and ultimately diapedesis via a paracellular or transcellular route. In atherosclerosis, the barrier function of the endothelium is impaired leading to uncontrolled leukocyte extravasation and vascular leakage. This is also observed in the neovessels that grow into the atherosclerotic plaque leading to intraplaque hemorrhage and plaque destabilization. This review focuses on the vascular endothelial barrier function and the interaction between endothelial cells and leukocytes during transmigration. We will discuss the role of endothelial dysfunction, transendothelial migration of leukocytes and plaque angiogenesis in atherosclerosis.

2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
M Aslam ◽  
H Idrees ◽  
C W Hamm ◽  
Y Ladilov

Abstract Background The integrity of the endothelial cell barrier of the microvasculature is compromised by inflammation. The increased vascular permeability leads to tissue injury and organ dysfunction. In recent years, considerable advances have been made in the understanding of signalling mechanisms regulating the endothelial barrier integrity. The role of endothelial metabolism as a modulator of endothelial barrier integrity is not yet well-studied. The aim of the present study was to investigate the effect of inflammation on endothelial metabolism and its role in the maintenance of endothelial barrier integrity. Methods The study was carried out on cultured human umbilical vein endothelial cells and rat coronary microvascular endothelial cells. Inflammatory condition was simulated by treating cells with low concentrations (1 ng/mL) of TNFα for 24h. Endothelial barrier function was analysed by measuring the flux of albumen through endothelial monolayers cultured on filter membranes. Gene expression was analysed by qPCR-based assays. The capacity of endothelial cells for maximal ATP synthesis rate was investigated by the real-time live-cell imaging using FRET-based ATP-biosensor (live cell FRET). Total cellular ATP concentration was measured using luminescence-based commercial kit (ATPLite, PerkinElmer). Mitochondrial mass was analysed by the ratio of mitochondrial DNA (mtDNA) to nuclear DNA (nDNA). The cellular glucose uptake was measured by fluorescent microscopy using a fluorescent analogue of glucose (2-NBDG). Results Treatment of human endothelial cells with TNFα resulted in significant suppression of mitochondrial and upregulation of glycolytic ATP synthesis rate, suggesting a metabolic switch. This was accompanied by a reduction in mitochondrial content (mtDNA/nDNA), reduction in total cellular ATP levels, an enhanced expression of glycolytic enzymes 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and phosphofructokinase 1 (PFK1), and enhanced glucose uptake by endothelial cells (n=5; p<0.05 for all parameters tested). Moreover, TNFα caused a 3-fold increase in endothelial permeability. Pharmacological inhibition of glycolysis either by partial replacement of glucose with 2-deoxy glucose (2DG) or an inhibition of PFKFB3 resulted in further worsening (a 5-fold increase in permeability) of TNFα-induced endothelial barrier failure. On the other hand pharmacological activation of AMPK, a potent inducer of mitochondrial biogenesis, could attenuate TNFα-induced but not 2DG-induced endothelial hyperpermeability. Conclusion The study demonstrates that TNFα induces metabolic switch towards glycolysis in endothelial cells. Moreover, the data suggest that upregulation of glycolysis may serve as an endogenous metabolic adaptation to the TNFα-induced suppression of mitochondrial ATP synthesis, which protects endothelial barrier integrity. FUNDunding Acknowledgement Type of funding sources: Public grant(s) – National budget only. Main funding source(s): Justus-Liebig University GiessenDZHK (German Centre for Cardiovascular Research), partner site Rhein-Main, Bad Nauheim, Germany


2019 ◽  
Vol 30 (5) ◽  
pp. 607-621 ◽  
Author(s):  
Manon C. A. Pronk ◽  
Jisca Majolée ◽  
Anke Loregger ◽  
Jan S. M. van Bezu ◽  
Noam Zelcer ◽  
...  

Rho GTPases control both the actin cytoskeleton and adherens junction stability and are recognized as essential regulators of endothelial barrier function. They act as molecular switches and are primarily regulated by the exchange of GDP and GTP. However, posttranslational modifications such as phosphorylation, prenylation, and ubiquitination can additionally alter their localization, stability, and activity. F-box proteins are involved in the recognition of substrate proteins predestined for ubiquitination and subsequent degradation. Given the importance of ubiquitination, we studied the effect of the loss of 62 members of the F-box protein family on endothelial barrier function in human umbilical vein endothelial cells. Endothelial barrier function was quantified by electrical cell impedance sensing and macromolecule passage assay. Our RNA interference–based screen identified FBXW7 as a key regulator of endothelial barrier function. Mechanistically, loss of FBXW7 induced the accumulation of the RhoB GTPase in endothelial cells, resulting in their increased contractility and permeability. FBXW7 knockdown induced activation of the cholesterol biosynthesis pathway and changed the prenylation of RhoB. This effect was reversed by farnesyl transferase inhibitors and by the addition of geranylgeranyl pyrophosphate. In summary, this study identifies FBXW7 as a novel regulator of endothelial barrier function in vitro. Loss of FBXW7 indirectly modulates RhoB activity via alteration of the cholesterol biosynthesis pathway and, consequently, of the prenylation status and activity of RhoB, resulting in increased contractility and disruption of the endothelial barrier.


2005 ◽  
Vol 79 (16) ◽  
pp. 10442-10450 ◽  
Author(s):  
Victoria M. Wahl-Jensen ◽  
Tatiana A. Afanasieva ◽  
Jochen Seebach ◽  
Ute Ströher ◽  
Heinz Feldmann ◽  
...  

ABSTRACT Ebola virus causes severe hemorrhagic fever with high mortality rates in humans and nonhuman primates. Vascular instability and dysregulation are disease-decisive symptoms during severe infection. While the transmembrane glycoprotein GP1,2 has been shown to cause endothelial cell destruction, the role of the soluble glycoproteins in pathogenesis is largely unknown; however, they are hypothesized to be of biological relevance in terms of target cell activation and/or increase of endothelial permeability. Here we show that virus-like particles (VLPs) consisting of the Ebola virus matrix protein VP40 and GP1,2 were able to activate endothelial cells and induce a decrease in barrier function as determined by impedance spectroscopy and hydraulic conductivity measurements. In contrast, the soluble glycoproteins sGP and Δ-peptide did not activate endothelial cells or change the endothelial barrier function. The VLP-induced decrease in barrier function was further enhanced by the cytokine tumor necrosis factor alpha (TNF-α), which is known to induce a long-lasting decrease in endothelial cell barrier function and is hypothesized to play a key role in Ebola virus pathogenesis. Surprisingly, sGP, but not Δ-peptide, induced a recovery of endothelial barrier function following treatment with TNF-α. Our results demonstrate that Ebola virus GP1,2 in its particle-associated form mediates endothelial cell activation and a decrease in endothelial cell barrier function. Furthermore, sGP, the major soluble glycoprotein of Ebola virus, seems to possess an anti-inflammatory role by protecting the endothelial cell barrier function.


2021 ◽  
Author(s):  
Stefanie Deinhardt-Emmer ◽  
Sarah Böttcher ◽  
Clio Häring ◽  
Liane Giebeler ◽  
Andreas Henke ◽  
...  

Infections with SARS-CoV-2 can be asymptomatic, but they can also be accompanied by a variety of symptoms that result in mild to severe coronavirus disease-19 (COVID-19) and are sometimes associated with systemic symptoms. Although the viral infection originates in the respiratory system, it is unclear how the virus can overcome the alveolar barrier, which is observed in severe COVID-19 disease courses. To elucidate the viral effects on the barrier integrity and immune reactions, we used mono-cell culture systems and a complex human chip model composed of epithelial, endothelial, and mononuclear cells. Our data show that SARS-CoV-2 efficiently infected epithelial cells with high viral loads and inflammatory response, including interferon expression. By contrast, the adjacent endothelial layer was neither infected nor did it show productive virus replication or interferon release. With prolonged infection, both cell types were damaged, and the barrier function was deteriorated, allowing the viral particles to overbear. In our study, we demonstrate that although SARS-CoV-2 is dependent on the epithelium for efficient replication, the neighboring endothelial cells are affected, e.g., by the epithelial cytokines or components induced during infection, which further results in the damage of the epithelial/endothelial barrier function and viral dissemination. IMPORTANCE SARS-CoV-2 challenges healthcare systems and societies worldwide in unprecedented ways. Although numerous new studies have been conducted, research to better understand the molecular pathogen-host interactions are urgently needed. For this, experimental models have to be developed and adapted. In the present study we used mono cell-culture systems and we established a complex chip model, where epithelial and endothelial cells are cultured in close proximity. We demonstrate that epithelial cells can be infected with SARS-CoV-2, while the endothelium did not show any infection signs. Since SARS-CoV-2 is able to establish viremia, the link to thromboembolic events in severe COVID-19 courses is evident. However, whether the endothelial layer is damaged by the viral pathogens or whether other endothelial-independent homeostatic factors are induced by the virus is essential for understanding the disease development. Therefore, our study is important as it demonstrates that the endothelial layer could not be infected by SARS-CoV-2 in our in vitro experiments, but we were able to show the destruction of the epithelial-endothelial barrier in our chip model. From our experiments we can assume that virus-induced host factors disturbed the epithelial-endothelial barrier function and thereby promote viral spread.


1995 ◽  
Vol 73 (04) ◽  
pp. 706-712 ◽  
Author(s):  
P G Bannon ◽  
Mi-Jurng Kim ◽  
R T Dean ◽  
J Dawes

SummaryGlycosaminoglycans (GAGs) are an important component of endothelial barrier function. Early passage human umbilical vein endothelial cells were grown to confluence on transparent micropore filters and barrier function assessed as transendothelial electrical resistance (TEER) and permeability to albumin and sucrose. Unfractionated heparin and the LMW heparin Clexane decreased endothelial permeability to both sucrose and albumin and increased TEER. Chondroitin 6-sulphate also augmented barrier function, but other GAGs had no effect. Interleukin-1 increased permeability to albumin and sucrose and decreased TEER. Although heparin attenuated the effect of IL-1 on TEER and sucrose permeability, it could not restore the barrier to albumin transfer. Denuded endothelial matrix presented a negligible barrier, which was not enhanced by heparin. When sulphation of endogenous GAGs was inhibited by chlorate, barrier function was compromised and was not restored by exogenous heparin. Thus heparin enhances the barrier function of resting endothelium, but cannot completely overcome the increased permeability resulting from exposure to IL-1 or substitute for endogenous GAGs.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2170
Author(s):  
Alexander García-Ponce ◽  
Katharina Schuster ◽  
Stein-Ove Døskeland ◽  
Rolf K. Reed ◽  
Fitz-Roy E. Curry ◽  
...  

Epac1 (exchange protein activated by cAMP) stabilizes the endothelial barrier, but detailed studies are limited by the side effects of pharmacological Epac1 modulators and transient transfections. Here, we compare the key properties of barriers between endothelial cells derived from wild-type (WT) and Epac1-knockout (KO) mice myocardium. We found that KO cell layers, unlike WT layers, had low and cAMP-insensitive trans-endothelial resistance (TER). They also had fragmented VE-cadherin staining despite having augmented cAMP levels and increased protein expression of Rap1, Rac1, RhoA, and VE-cadherin. The simultaneous direct activation of Rac1 and RhoA by CN04 compensated Epac1 loss, since TER was increased. In KO-cells, inhibition of Rac1 activity had no additional effect on TER, suggesting that other mechanisms compensate the inhibition of the Rac1 function to preserve barrier properties. In summary, Epac1 is crucial for baseline and cAMP-mediated barrier stabilization through mechanisms that are at least partially independent of Rac1.


Sign in / Sign up

Export Citation Format

Share Document