scholarly journals PPARgamma: A Potential Intrinsic and Extrinsic Molecular Target for Breast Cancer Therapy

Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 543
Author(s):  
Giuseppina Augimeri ◽  
Daniela Bonofiglio

Over the last decades, the breast tumor microenvironment (TME) has been increasingly recognized as a key player in tumor development and progression and as a promising prognostic and therapeutic target for breast cancer patients. The breast TME, representing a complex network of cellular signaling—deriving from different stromal cell types as well as extracellular matrix components, extracellular vesicles, and soluble growth factors—establishes a crosstalk with cancer cells sustaining tumor progression. A significant emphasis derives from the tumor surrounding inflammation responsible for the failure of the immune system to effectively restrain breast cancer growth. Thus, effective therapeutic strategies require a deeper understanding of the interplay between tumor and stroma, aimed at targeting both the intrinsic neoplastic cells and the extrinsic surrounding stroma. In this scenario, peroxisome proliferator-activated receptor (PPAR) γ, primarily known as a metabolic regulator, emerged as a potential target for breast cancer treatment since it functions in breast cancer cells and several components of the breast TME. In particular, the activation of PPARγ by natural and synthetic ligands inhibits breast cancer cell growth, motility, and invasiveness. Moreover, activated PPARγ may educate altered stromal cells, counteracting the pro-inflammatory milieu that drive breast cancer progression. Interestingly, using Kaplan–Meier survival curves, PPARγ also emerges as a prognostically favorable factor in breast cancer patients. In this perspective, we briefly discuss the mechanisms by which PPARγ is implicated in tumor biology as well as in the complex regulatory networks within the breast TME. This may help to profile approaches that provide a simultaneous inhibition of epithelial cells and TME components, offering a more efficient way to treat breast cancer.

2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e21029-e21029
Author(s):  
Christopher Neal ◽  
Sujita Sukumaran ◽  
Vishal Gupta ◽  
Insiya Jafferji ◽  
Dave Hasegawa ◽  
...  

e21029 Background: Up-regulation of epithelial mesenchymal transition (EMT) and the reduction of epithelial marker expression is associated with invasion, cancer progression, resistance to conventional therapies and poor prognosis. ApoStream, a novel continuous flow dielectrophoresis field-flow fractionation (DEP-FFF) device, was used to enable antibody-independent capture of circulating cancer cells (CCCs,also referred to as circulating tumor cells, CTC) for subsequent phenotyping of EMT markers. Methods: A side-by-side comparison of CellSearch and ApoStream was performed on 10 metastatic breast cancer patients. A multiplexed immunofluorescent assay and laser scanning cytometry analyses were used to unambiguously identify CK+/CD45–/DAPI+ CCCs and quantify their EpCAM and vimentin expression. Results: ApoStream recovered CK+/CD45–/DAPI+ CCCs from each breast cancer patient sample tested (mean=255 CCCs per 7.5 ml blood, see Table). ApoStream consistently recovered significantly higher number of CCCs compared to CellSearch (p=0.024). ApoStream recovered both EpCAM+ and EpCAM– CCCs in 50% and 90% of patients, respectively. Vimentin+ CCCs were isolated from 90% of patients. Conclusions: ApoStream’s higher capture efficiency demonstrated the majority of CCCs from breast cancer patients were EpCAM negative and vimentin-positive. ApoStream technology can be used to monitor CCCs undergoing EMT. [Table: see text]


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 858
Author(s):  
Jagyeong Oh ◽  
Davide Pradella ◽  
Changwei Shao ◽  
Hairi Li ◽  
Namjeong Choi ◽  
...  

Aberrant alternative splicing (AS) is a hallmark of cancer and a potential target for novel anti-cancer therapeutics. Breast cancer-associated AS events are known to be linked to disease progression, metastasis, and survival of breast cancer patients. To identify altered AS programs occurring in metastatic breast cancer, we perform a global analysis of AS events by using RNA-mediated oligonucleotide annealing, selection, and ligation coupled with next-generation sequencing (RASL-seq). We demonstrate that, relative to low-metastatic, high-metastatic breast cancer cells show different AS choices in genes related to cancer progression. Supporting a global reshape of cancer-related splicing profiles in metastatic breast cancer we found an enrichment of RNA-binding motifs recognized by several splicing regulators, which have aberrant expression levels or activity during breast cancer progression, including SRSF1. Among SRSF1-regulated targets we found DCUN1D5, a gene for which skipping of exon 4 in its pre-mRNA introduces a premature termination codon (PTC), thus generating an unstable transcript degraded by nonsense-mediated mRNA decay (NMD). Significantly, distinct breast cancer subtypes show different DCUN1D5 isoform ratios with metastatic breast cancer expressing the highest level of the NMD-insensitive DCUN1D5 mRNA, thus showing high DCUN1D5 expression levels, which are ultimately associated with poor overall and relapse-free survival in breast cancer patients. Collectively, our results reveal global AS features of metastatic breast tumors, which open new possibilities for the treatment of these aggressive tumor types.


2007 ◽  
Vol 28 (2) ◽  
pp. 687-704 ◽  
Author(s):  
Cameron N. Johnstone ◽  
Perry S. Mongroo ◽  
A. Sophie Rich ◽  
Michael Schupp ◽  
Mark J. Bowser ◽  
...  

ABSTRACT Parvin-β is a focal adhesion protein downregulated in human breast cancer cells. Loss of Parvin-β contributes to increased integrin-linked kinase activity, cell-matrix adhesion, and invasion through the extracellular matrix in vitro. The effect of ectopic Parvin-β expression on the transcriptional profile of MDA-MB-231 breast cancer cells, which normally do not express Parvin-β, was evaluated. Particular emphasis was placed upon propagating MDA-MB-231 breast cancer cells in three-dimensional culture matrices. Interestingly, Parvin-β reexpression in MDA-MB-231 cells increased the mRNA expression, serine 82 phosphorylation (mediated by CDK9), and activity of the nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPARγ), and there was a concomitant increase in lipogenic gene expression as a downstream effector of PPARγ. Importantly, Parvin-β suppressed breast cancer growth in vivo, with associated decreased proliferation. These data suggest that Parvin-β might influence breast cancer progression.


MicroRNA ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 58-63
Author(s):  
Batool Savari ◽  
Sohrab Boozarpour ◽  
Maryam Tahmasebi-Birgani ◽  
Hossein Sabouri ◽  
Seyed Mohammad Hosseini

Background: Breast cancer is the most common cancer diagnosed in women worldwide. So it seems that there's a good chance of recovery if it's detected in its early stages even before the appearances of symptoms. Recent studies have shown that miRNAs play an important role during cancer progression. These transcripts can be tracked in liquid samples to reveal if cancer exists, for earlier treatment. MicroRNA-21 (miR-21) has been shown to be a key regulator of carcinogenesis, and breast tumor is no exception. Objective: The present study was aimed to track the miR-21 expression level in serum of the breast cancer patients in comparison with that of normal counterparts. Methods: Comparative real-time polymerase chain reaction was applied to determine the levels of expression of miR-21 in the serum samples of 57 participants from which, 42 were the patients with breast cancer including pre-surgery patients (n = 30) and post-surgery patients (n = 12), and the others were the healthy controls (n = 15). Results: MiR-21 was significantly over expressed in the serum of breast cancer patients as compared with healthy controls (P = 0.002). A significant decrease was also observed following tumor resection (P < 0.0001). Moreover, it was found that miR-21 overexpression level was significantly associated with tumor grade (P = 0.004). Conclusion: These findings suggest that miR-21 has the potential to be used as a novel breast cancer biomarker for early detection and prognosis, although further experiments are needed.


2021 ◽  
pp. 1-10
Author(s):  
Yu Wang ◽  
Han Zhao ◽  
Ping Zhao ◽  
Xingang Wang

BACKGROUND: Pyruvate kinase M2 (PKM2) was overexpressed in many cancers, and high PKM2 expression was related with poor prognosis and chemoresistance. OBJECTIVE: We investigated the expression of PKM2 in breast cancer and analyzed the relation of PKM2 expression with chemotherapy resistance to the neoadjuvant chemotherapy (NAC). We also investigated whether PKM2 could reverse chemoresistance in breast cancer cells in vitro and in vivo. METHODS: Immunohistochemistry (IHC) was performed in 130 surgical resected breast cancer tissues. 78 core needle biopsies were collected from breast cancer patients before neoadjuvant chemotherapy. The relation of PKM2 expression and multi-drug resistance to NAC was compared. The effect of PKM2 silencing or overexpression on Doxorubicin (DOX) sensitivity in the MCF-7 cells in vitro and in vivo was compared. RESULTS: PKM2 was intensively expressed in breast cancer tissues compared to adjacent normal tissues. In addition, high expression of PKM2 was associated with poor prognosis in breast cancer patients. The NAC patients with high PKM2 expression had short survival. PKM2 was an independent prognostic predictor for surgical resected breast cancer and NAC patients. High PKM2 expression was correlated with neoadjuvant treatment resistance. High PKM2 expression significantly distinguished chemoresistant patients from chemosensitive patients. In vitro and in vivo knockdown of PKM2 expression decreases the resistance to DOX in breast cancer cells in vitro and tumors in vivo. CONCLUSION: PKM2 expression was associated with chemoresistance of breast cancers, and could be used to predict the chemosensitivity. Furthermore, targeting PKM2 could reverse chemoresistance, which provides an effective treatment methods for patients with breast cancer.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1119
Author(s):  
Ivonne Nel ◽  
Erik W. Morawetz ◽  
Dimitrij Tschodu ◽  
Josef A. Käs ◽  
Bahriye Aktas

Circulating tumor cells (CTCs) are a potential predictive surrogate marker for disease monitoring. Due to the sparse knowledge about their phenotype and its changes during cancer progression and treatment response, CTC isolation remains challenging. Here we focused on the mechanical characterization of circulating non-hematopoietic cells from breast cancer patients to evaluate its utility for CTC detection. For proof of premise, we used healthy peripheral blood mononuclear cells (PBMCs), human MDA-MB 231 breast cancer cells and human HL-60 leukemia cells to create a CTC model system. For translational experiments CD45 negative cells—possible CTCs—were isolated from blood samples of patients with mamma carcinoma. Cells were mechanically characterized in the optical stretcher (OS). Active and passive cell mechanical data were related with physiological descriptors by a random forest (RF) classifier to identify cell type specific properties. Cancer cells were well distinguishable from PBMC in cell line tests. Analysis of clinical samples revealed that in PBMC the elliptic deformation was significantly increased compared to non-hematopoietic cells. Interestingly, non-hematopoietic cells showed significantly higher shape restoration. Based on Kelvin–Voigt modeling, the RF algorithm revealed that elliptic deformation and shape restoration were crucial parameters and that the OS discriminated non-hematopoietic cells from PBMC with an accuracy of 0.69, a sensitivity of 0.74, and specificity of 0.63. The CD45 negative cell population in the blood of breast cancer patients is mechanically distinguishable from healthy PBMC. Together with cell morphology, the mechanical fingerprint might be an appropriate tool for marker-free CTC detection.


2012 ◽  
Vol 11 (11) ◽  
pp. 1457-1467 ◽  
Author(s):  
Olesya Chornoguz ◽  
Alexei Gapeev ◽  
Michael C. O'Neill ◽  
Suzanne Ostrand-Rosenberg

The major histocompatibility complex (MHC) class II-associated Invariant chain (Ii) is present in professional antigen presenting cells where it regulates peptide loading onto MHC class II molecules and the peptidome presented to CD4+ T lymphocytes. Because Ii prevents peptide loading in neutral subcellular compartments, we reasoned that Ii− cells may present peptides not presented by Ii+ cells. Based on the hypothesis that patients are tolerant to MHC II-restricted tumor peptides presented by Ii+ cells, but will not be tolerant to novel peptides presented by Ii− cells, we generated MHC II vaccines to activate cancer patients' T cells. The vaccines are Ii− tumor cells expressing syngeneic HLA-DR and the costimulatory molecule CD80. We used liquid chromatography coupled with mass spectrometry to sequence MHC II-restricted peptides from Ii+ and Ii− MCF10 human breast cancer cells transfected with HLA-DR7 or the MHC Class II transactivator CIITA to determine if Ii− cells present novel peptides. Ii expression was induced in the HLA-DR7 transfectants by transfection of Ii, and inhibited in the CIITA transfectants by RNA interference. Peptides were analyzed and binding affinity predicted by artificial neural net analysis. HLA-DR7-restricted peptides from Ii− and Ii+ cells do not differ in size or in subcellular location of their source proteins; however, a subset of HLA-DR7-restricted peptides of Ii− cells are not presented by Ii+ cells, and are derived from source proteins not used by Ii+ cells. Peptides from Ii− cells with the highest predicted HLA-DR7 binding affinity were synthesized, and activated tumor-specific HLA-DR7+ human T cells from healthy donors and breast cancer patients, demonstrating that the MS-identified peptides are bonafide tumor antigens. These results demonstrate that Ii regulates the repertoire of tumor peptides presented by MHC class II+ breast cancer cells and identify novel immunogenic MHC II-restricted peptides that are potential therapeutic reagents for cancer patients.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Yifan Wang ◽  
Ruocen Liao ◽  
Xingyu Chen ◽  
Xuhua Ying ◽  
Guanping Chen ◽  
...  

Abstract Breast cancer is considered to be the most prevalent cancer in women worldwide, and metastasis is the primary cause of death. Protease-activated receptor 1 (PAR1) is a GPCR family member involved in the invasive and metastatic processes of cancer cells. However, the functions and underlying mechanisms of PAR1 in breast cancer remain unclear. In this study, we found that PAR1 is highly expressed in high invasive breast cancer cells, and predicts poor prognosis in ER-negative and high-grade breast cancer patients. Mechanistically, Twist transcriptionally induces PAR1 expression, leading to inhibition of Hippo pathway and activation of YAP/TAZ; Inhibition of PAR1 suppresses YAP/TAZ-induced epithelial-mesenchymal transition (EMT), invasion, migration, cancer stem cell (CSC)-like properties, tumor growth and metastasis of breast cancer cells in vitro and in vivo. These findings suggest that PAR1 acts as a direct transcriptionally target of Twist, can promote EMT, tumorigenicity and metastasis by controlling the Hippo pathway; this may lead to a potential therapeutic target for treating invasive breast cancer.


Sign in / Sign up

Export Citation Format

Share Document