scholarly journals Comparison of Autologous Blood Clots with Fibrin Sealant as Scaffolds for Promoting Human Muscle-Derived Stem Cell-Mediated Bone Regeneration

Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 983
Author(s):  
Xueqin Gao ◽  
Haizi Cheng ◽  
Xuying Sun ◽  
Aiping Lu ◽  
Joseph J. Ruzbarsky ◽  
...  

Background. Fibrin sealant has been used as a scaffold to deliver genetically modified human muscle-derived stem cells (hMDSCs) for bone regeneration. Alternatively, autologous blood clots are safe, economic scaffolds. This study compared autologous blood clot (BC) with fibrin sealant (FS) as a scaffold to deliver lenti-BMP2/GFP-transduced hMDSCs for bone regeneration. Methods. In vitro osteogenic differentiation was performed using 3D pellet culture and evaluated using microCT and Von Kossa staining. The lenti-GFP transduced cells were then mixed with human blood for evaluation of osteogenic differentiation. Furthermore, a murine critical- sized calvarial defect model was utilized to compare BC and FS scaffolds for lenti-BMP2/GFP-transduced hMDSCs mediated bone regeneration and evaluated with micro-CT and histology. Results. Lenti-BMP2/GFP transduced hMDSCs formed significantly larger mineralized pellets than non-transduced hMDSCs. hMDSCs within the human blood clot migrated out and differentiated into ALP+ osteoblasts. In vivo, BC resulted in significantly less new bone formation within a critical-sized calvarial bone defect than FS scaffold, despite no difference observed for GFP+ donor cells, osteoclasts, and osteoblasts in the newly formed bone. Conclusions. Human lenti-BMP2/GFP-transduced hMDSCs can efficiently undergo osteogenic differentiation in vitro. Unexpectedly, the newly regenerated bone in BC group was significantly less than the FS group. The autologous blood clot scaffold is less efficacious for delivering stem cells for bone regeneration than fibrin sealant.

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 853 ◽  
Author(s):  
Dewi Sartika ◽  
Chih-Hsin Wang ◽  
Ding-Han Wang ◽  
Juin-Hong Cherng ◽  
Shu-Jen Chang ◽  
...  

Recently, stem cell-based bone tissue engineering (BTE) has been recognized as a preferable and clinically significant strategy for bone repair. In this study, a pure 3D silk fibroin (SF) scaffold was fabricated as a BTE material using a lyophilization method. We aimed to investigate the efficacy of the SF scaffold with and without seeded human adipose-derived mesenchymal stem cells (hASCs) in facilitating bone regeneration. The effectiveness of the SF-hASCs scaffold was evaluated based on physical characterization, biocompatibility, osteogenic differentiation in vitro, and bone regeneration in critical rat calvarial defects in vivo. The SF scaffold demonstrated superior biocompatibility and significantly promoted osteogenic differentiation of hASCs in vitro. At six and twelve weeks postimplantation, micro-CT showed no statistical difference in new bone formation amongst all groups. However, histological staining results revealed that the SF-hASCs scaffold exhibited a better bone extracellular matrix deposition in the defect regions compared to other groups. Immunohistochemical staining confirmed this result; expression of osteoblast-related genes (BMP-2, COL1a1, and OCN) with the SF-hASCs scaffold treatment was remarkably positive, indicating their ability to achieve effective bone remodeling. Thus, these findings demonstrate that SF can serve as a potential carrier for stem cells, to be used as an osteoconductive bioscaffold for BTE applications.


2016 ◽  
Vol 24 ◽  
pp. S93-S94
Author(s):  
Xueqin Gao ◽  
Ying Tang ◽  
Aiping Lu ◽  
Bing Wang ◽  
Xiaohong Bi ◽  
...  

2020 ◽  
Vol 3 (3) ◽  
pp. 267-278
Author(s):  
Alan Jesus ◽  
Adriano Jesus ◽  
Flávia Lima ◽  
Luiz Freitas ◽  
Cássio Meira ◽  
...  

Autogenous bone grafting is needed in some bone tissue defects; however, it causes secondary surgical wounds and morbidity. Tissue bioengineering may be an alternative approach for bone regeneration. Here we investigated the osteogenic potential of dental pulp stem cells from deciduous teeth (DPSC) in association with a Ricinus bone compound (RBC) in a model of bone defect. The influence of the biomaterial RBC on the proliferation and osteogenic differentiation of DPSC was assessed in vitro by MTT metabolism and alizarin red staining, respectively. The morphologic analysis was performed using the optic and scanning electron (SEM) microscopies. For the in vivo study, 54 Wistar rats submitted to calvarial defects were filled with RBC or RBC+DPSC. A control group had the defects filled only with blood clots. Analyses were performed 15, 30 and 60 days after treatment using digital radiography, optical microscopy, SEM and chemical analysis by electron dispersive spectroscopy. The Ricinus bone compound (RBC) did not inhibit the osteogenic differentiation in vitro. No spontaneous regeneration was observed in the control group. The area of the calvarial defect of the RBC+DPSC group showed greater radiopacity on day 15. The RBC presented no reabsorption, was biocompatible and showed osteointegration, working as a mechanical filling. Only sparse ossification areas were found and those were larger and more developed on the RBC+DPSC group when compared to animals treated only with RBC. RBC in association with DPSC is a promising combination for applications in bone regeneration.  


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260760
Author(s):  
Bo-Hyun Park ◽  
Eui-Seung Jeong ◽  
Sujin Lee ◽  
Jun-Hyeog Jang

Titanium is a biomaterial that meets a number of important requirements, including excellent mechanical and chemical properties, but has low bioactivity. To improve cellular response onto titanium surfaces and hence its osseointegration, the titanium surface was bio-functionalized to mimic an extracellular matrix (ECM)-like microenvironment that positively influences the behavior of stem cells. In this respect, fibronectin and elastin are important components of the ECM that regulate stem cell differentiation by supporting the biological microenvironment. However, each native ECM is unsuitable due to its high production cost and immunogenicity. To overcome these problems, a recombinant chimeric fibronectin type III9-10 and elastin-like peptide fragments (FN9-10ELP) was developed herein and applied to the bio-functionalized of the titanium surface. An evaluation of the biological activity and cellular responses with respect to bone regeneration indicated a 4-week sustainability on the FN9-10ELP functionalized titanium surface without an initial burst effect. In particular, the adhesion and proliferation of human mesenchymal stem cells (hMSCs) was significantly increased on the FN9-10ELP coated titanium compared to that observed on the non-coated titanium. The FN9-10ELP coated titanium induced osteogenic differentiation such as the alkaline phosphatase (ALP) activity and mineralization activity. In addition, expressions of osteogenesis-related genes such as a collagen type I (Col I), Runt-related transcription factor 2 (RUNX2), osteopontin (OPN), osteocalcin (OCN), bone sialo protein (BSP), and PDZ-binding motif (TAZ) were further increased. Thus, in vitro the FN9-10ELP functionalization titanium not only sustained bioactivity but also induced osteogenic differentiation of hMSCs to improve bone regeneration.


2021 ◽  
Author(s):  
Haoming Liu ◽  
Gaojie Yang ◽  
Hao Yin ◽  
Zhenxing Wang ◽  
Chunyuan Chen ◽  
...  

Two-dimensional calcium phosphate nanomaterials are able to stimulate in vitro osteogenic differentiation of stem cells and in vivo bone regeneration by inducing M2 polarization of macrophages, rather than manipulating stem cells’ fate directly.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Intekhab Islam ◽  
Gopu Sriram ◽  
Mingming Li ◽  
Yu Zou ◽  
Lulu Li ◽  
...  

Cellular therapy using stem cells in bone regeneration has gained increasing interest. Various studies suggest the clinical utility of osteoprogenitors-like mesenchymal stem cells in bone regeneration. However, limited availability of mesenchymal stem cells and conflicting evidence on their therapeutic efficacy limit their clinical application. Human embryonic stem cells (hESCs) are potentially an unlimited source of healthy and functional osteoprogenitors (OPs) that could be utilized for bone regenerative applications. However, limited ability to track hESC-derived progenies in vivo greatly hinders translational studies. Hence, in this study, we aimed to establish hESC-derived OPs (hESC-OPs) expressing green fluorescent protein (GFP) and to investigate their osteogenic differentiation potential in vitro. We fluorescently labelled H9-hESCs using a plasmid vector encoding GFP. The GFP-expressing hESCs were differentiated into hESC-OPs. The hESC-OPsGFP+ stably expressed high levels of GFP, CD73, CD90, and CD105. They possessed osteogenic differentiation potential in vitro as demonstrated by increased expression of COL1A1, RUNX2, OSTERIX, and OPG transcripts and mineralized nodules positive for Alizarin Red and immunocytochemical expression of osteocalcin, alkaline phosphatase, and collagen-I. In conclusion, we have demonstrated that fluorescently labelled hESC-OPs can maintain their GFP expression for the long term and their potential for osteogenic differentiation in vitro. In future, these fluorescently labelled hESC-OPs could be used for noninvasive assessment of bone regeneration, safety, and therapeutic efficacy.


2019 ◽  
Vol 7 (4) ◽  
pp. 507-515 ◽  
Author(s):  
Eman E. A. Mohammed ◽  
Mohamed El-Zawahry ◽  
Abdel Razik H. Farrag ◽  
Nahla N. Abdel Aziz ◽  
Wessam Sharaf-ElDin ◽  
...  

BACKGROUND: Cell therapies offer a promising potential in promoting bone regeneration. Stem cell therapy presents attractive care modality in treating degenerative conditions or tissue injuries. The rationale behind this is both the expansion potential of stem cells into a large cell population size and its differentiation abilities into a wide variety of tissue types, when given the proper stimuli. A progenitor stem cell is a promising source of cell therapy in regenerative medicine and bone tissue engineering. AIM: This study aimed to compare the osteogenic differentiation and regenerative potentials of human mesenchymal stem cells derived from human bone marrow (hBM-MSCs) or amniotic fluid (hAF-MSCs), both in vitro and in vivo studies. SUBJECTS AND METHODS: Human MSCs, used in this study, were successfully isolated from two human sources; the bone marrow (BM) and amniotic fluid (AF) collected at the gestational ages of second or third trimesters. RESULTS: The stem cells derived from amniotic fluid seemed to be the most promising type of progenitor cells for clinical applications. In a pre-clinical experiment, attempting to explore the therapeutic application of MSCs in bone regeneration, Rat lumbar spines defects were surgically created and treated with undifferentiated and osteogenically differentiated MSCs, derived from BM and second trimester AF. Cells were loaded on gel-foam scaffolds, inserted and fixed in the area of the surgical defect. X-Ray radiography follows up, and histopathological analysis was done three-four months post- operation. The transplantation of AF-MSCs or BM-MSCs into induced bony defects showed promising results. The AF-MSCs are offering a better healing effect increasing the likelihood of achieving successful spinal fusion. Some bone changes were observed in rats transplanted with osteoblasts differentiated cells but not in rats transplanted with undifferentiated MSCs. Longer observational periods are required to evaluate a true bone formation. The findings of this study suggested that the different sources; hBM-MSCs or hAF-MSCs exhibited remarkably different signature regarding the cell morphology, proliferation capacity and osteogenic differentiation potential CONCLUSIONS: AF-MSCs have a better performance in vivo bone healing than that of BM-MSCs. Hence, AF derived MSCs is highly recommended as an alternative source to BM-MSCs in bone regeneration and spine fusion surgeries. Moreover, the usage of gel-foam as a scaffold proved as an efficient cell carrier that showed bio-compatibility with cells, bio-degradability and osteoinductivity in vivo.


2018 ◽  
Vol 9 (3) ◽  
pp. 322-328
Author(s):  
O. K. Popsuishapka ◽  
N. O. Ashukina ◽  
V. O. Litvishko ◽  
V. V. Grigorjev ◽  
O. O. Pidgaiska ◽  
...  

This study focuses on mechanisms which regulate the process of fracture healing. We studied the form and position of the fibrin-blood clots (FBC) in the zone near the fragments among patients with limb fractures: macroscopically (during open surgical operations to reposition bone fragments) and using sonography. We conducted a histological and immuno-histochemical analysis of biopsy material obtained from the zone around the fracture during surgical procedures on 16 patients in 1–18 days after the fracture. We determined that the density of FBC and their form depends on the volume of damage to the periosteum-muscular fascia and the extent of the shift of fragments. In most cases, with a closed fracture, fibrin-blood clots had a spindle-shaped form. Fibrin along the periphery and in the zone between the fragments has a dense structure, and becomes cellular in central zones. The cells surrounded by fibrin partitions contain blood cells and serum. In many places, fibrin partitions had a one-direction orientation position, and the cells were oval-elongated, which indicated hydrostatic pressure in them. Proliferation of mesenchymal cells began in the vital tissues around the FBC, then during reproduction they pentrated to fibrin. Lengthwise axis of the cells was parallel to fibrin partitions. The bone trabeculae which form on the third week after fracture repeated the orientation of the fibrin partitions. It was determined that the vascular endothelial growth factor (VGEF) concentrates in fibrin and remains in it over the first week after the fracture, later it was found in endotheliocytes, fibroblasts and osteoblasts. The process of filling of the cells with around-fracture FBC lasted 12–18 days and during this period, their osteogenic differentiation occurred. Such tempi and orientation of the process is caused by fibrin with a concentration of growth factors in it. Using the results of the study, it could be assumed that the main conditions for osteogenic differentiation of cells are high concentration of VGEF in the fibrin, which initiates neoangiogenesis and internal tension of fibrin partitions. The formation of structured FBC around the ends of the fragments, which contain VGEF should be considered an initial stage of the process of forming of bone regeneration.


2021 ◽  
Author(s):  
Ya-Hui Chan ◽  
Kuo-Ning Ho ◽  
Yu-Chieh Lee ◽  
Meng-Jung Chou ◽  
Wei-Zhen Lew ◽  
...  

Abstract Background:Mesenchymal stem cell (MSC)-based tissue engineering plays a major role in regenerative medicine. However, the efficiency of MSC transplantation and survival of engrafted stem cells remain challenging. Melatonin can regulate MSC biology. However, its function in the osteogenic differentiation of dental pulp-derived MSCs (DPSCs) remains unclear. We investigated the effects and mechanisms of melatonin preconditioning on the osteogenic differentiation and bone regeneration capacities of DPSCs.Methods:The biological effects and signaling mechanisms of melatonin with different concentrations on DPSCs were evaluated using a proliferation assay, the quantitative alkaline phosphatase (ALP) activity, Alizarin red staining, a real-time polymerase chain reaction, and a western blot in vitro cell culture model. The in vivo bone regeneration capacities were assessed among empty control, MBCP, MBCP+DPSCs, and MBCP+DPSCs+melatonin preconditioning in four-created calvarial bone defects by using micro–computed tomographic, histological, histomorphometric, and immunofluorescence analyses after 4 and 8 weeks of healing.Results:In vitro experiments revealed that melatonin (1, 10, and 100 μM) significantly and concentration-dependently promoted proliferation, surface marker expression (CD 146), ALP activity and extracellular calcium deposition, and osteogenic gene expression of DPSCs (p < 0.05). Melatonin activated the phosphorylation of RUNX-2 and OCN and inhibited COX-2/NF-κB phosphorylation. Furthermore, the phosphorylation of mitogen-activated protein kinase (MAPK) P38/ERK signaling was significantly increased in DPSCs treated with 100 μM melatonin, and their inhibitors significantly decreased osteogenic differentiation. In vivo experiments demonstrated that bone defects implanted with MBCP bone-grafting materials and melatonin-preconditioned melatonin exhibited significantly greater bone volume fraction, trabecular bone structural modeling, new bone formation, and osteogenesis-related protein expression than the other three groups at 4 and 8 weeks postoperatively (p < 0.05).Conclusions:These results suggest that melatonin promotes the proliferation and osteogenic differentiation of DPSCs by regulating COX-2/NF-κB and p38/ERK MAPK signaling pathways. Preconditioning DPSCs with melatonin before transplantation can efficiently enhance MSC function and regenerative capacities.


Sign in / Sign up

Export Citation Format

Share Document