scholarly journals Fibrin-blood clot as an initial stage of formation of bone regeneration after a bone fracture

2018 ◽  
Vol 9 (3) ◽  
pp. 322-328
Author(s):  
O. K. Popsuishapka ◽  
N. O. Ashukina ◽  
V. O. Litvishko ◽  
V. V. Grigorjev ◽  
O. O. Pidgaiska ◽  
...  

This study focuses on mechanisms which regulate the process of fracture healing. We studied the form and position of the fibrin-blood clots (FBC) in the zone near the fragments among patients with limb fractures: macroscopically (during open surgical operations to reposition bone fragments) and using sonography. We conducted a histological and immuno-histochemical analysis of biopsy material obtained from the zone around the fracture during surgical procedures on 16 patients in 1–18 days after the fracture. We determined that the density of FBC and their form depends on the volume of damage to the periosteum-muscular fascia and the extent of the shift of fragments. In most cases, with a closed fracture, fibrin-blood clots had a spindle-shaped form. Fibrin along the periphery and in the zone between the fragments has a dense structure, and becomes cellular in central zones. The cells surrounded by fibrin partitions contain blood cells and serum. In many places, fibrin partitions had a one-direction orientation position, and the cells were oval-elongated, which indicated hydrostatic pressure in them. Proliferation of mesenchymal cells began in the vital tissues around the FBC, then during reproduction they pentrated to fibrin. Lengthwise axis of the cells was parallel to fibrin partitions. The bone trabeculae which form on the third week after fracture repeated the orientation of the fibrin partitions. It was determined that the vascular endothelial growth factor (VGEF) concentrates in fibrin and remains in it over the first week after the fracture, later it was found in endotheliocytes, fibroblasts and osteoblasts. The process of filling of the cells with around-fracture FBC lasted 12–18 days and during this period, their osteogenic differentiation occurred. Such tempi and orientation of the process is caused by fibrin with a concentration of growth factors in it. Using the results of the study, it could be assumed that the main conditions for osteogenic differentiation of cells are high concentration of VGEF in the fibrin, which initiates neoangiogenesis and internal tension of fibrin partitions. The formation of structured FBC around the ends of the fragments, which contain VGEF should be considered an initial stage of the process of forming of bone regeneration.

Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 983
Author(s):  
Xueqin Gao ◽  
Haizi Cheng ◽  
Xuying Sun ◽  
Aiping Lu ◽  
Joseph J. Ruzbarsky ◽  
...  

Background. Fibrin sealant has been used as a scaffold to deliver genetically modified human muscle-derived stem cells (hMDSCs) for bone regeneration. Alternatively, autologous blood clots are safe, economic scaffolds. This study compared autologous blood clot (BC) with fibrin sealant (FS) as a scaffold to deliver lenti-BMP2/GFP-transduced hMDSCs for bone regeneration. Methods. In vitro osteogenic differentiation was performed using 3D pellet culture and evaluated using microCT and Von Kossa staining. The lenti-GFP transduced cells were then mixed with human blood for evaluation of osteogenic differentiation. Furthermore, a murine critical- sized calvarial defect model was utilized to compare BC and FS scaffolds for lenti-BMP2/GFP-transduced hMDSCs mediated bone regeneration and evaluated with micro-CT and histology. Results. Lenti-BMP2/GFP transduced hMDSCs formed significantly larger mineralized pellets than non-transduced hMDSCs. hMDSCs within the human blood clot migrated out and differentiated into ALP+ osteoblasts. In vivo, BC resulted in significantly less new bone formation within a critical-sized calvarial bone defect than FS scaffold, despite no difference observed for GFP+ donor cells, osteoclasts, and osteoblasts in the newly formed bone. Conclusions. Human lenti-BMP2/GFP-transduced hMDSCs can efficiently undergo osteogenic differentiation in vitro. Unexpectedly, the newly regenerated bone in BC group was significantly less than the FS group. The autologous blood clot scaffold is less efficacious for delivering stem cells for bone regeneration than fibrin sealant.


2013 ◽  
Vol 24 (4) ◽  
pp. 299-307 ◽  
Author(s):  
Fernando Antonio Mauad de Abreu ◽  
Cynthia Lopes Ferreira ◽  
Gerluza Aparecida Borges Silva ◽  
Camila de Oliveira Paulo ◽  
Melissa Nunes Miziara ◽  
...  

This work evaluated the bone-forming potential of the platelet-derived growth factor isoform BB (PDGF-BB), insulin-like growth factor I (IGF-I), and mixed PDGF-BB/IGF-I delivered in liposomes compared with phosphate buffered saline (PBS), in the healing process of rat tooth sockets. One hundred and twelve Wistar rats were randomized into 7 groups of 16 animals each and were evaluated at 3, 7, 14 and 21 days after extraction of the maxillary second molars. The left sockets were treated with PBS (P), empty liposome (L), IGF-I in PBS (IP), IGF-I in liposome (IL), PDGF-BB in PBS (PDP), PDGF-BB in liposome (PDL) and both growth factors (GFs) together within liposomes (PDIL). The right sockets were filled with blood clot (BC). Histological and histomorphometric analyses were used to evaluate the formation of new bone and blood vessels. Immunohistochemistry was performed to evaluate the expression of osteocalcin and vascular endothelial growth factor (VEGF) during bone repair. Data were tested statistically using a Tukey's test according to a Dunn's analysis and Mann-Whitney U test followed by Kruskal-Wallis one-way analysis. Results were considered significant when p<0.05. A significantly higher percentage of bone trabeculae and a higher number of blood vessels were observed in the IL, PDL and PDIL groups (p<0.05). However, these GF-liposome groups had statistically similar results. Immunohistochemical assays first detected osteocalcin and VEGF expression at 3 days followed by a peak at 7 days. Lower immunoreactivity levels were observed in the BC, L, P, IP and PDP groups compared with the IL, PDL and PDIL groups (p<0.05). The results suggest that GFs carried by liposomes, either in isolated or mixed forms, enhanced the healing process in rat tooth sockets. The differential expression of the osteogenic markers VEGF and osteocalcin in the early phases of bone healing support these findings.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6642
Author(s):  
Lucio Milillo ◽  
Fabrizio Cinone ◽  
Federico Lo Presti ◽  
Dorina Lauritano ◽  
Massimo Petruzzi

In Guided Bone Regeneration (GBR) materials and techniques are essential to achieve the expected results. Thanks to their properties, blood clots induce bone healing, maturation, differentiation and organization. The preferred material to protect the clot in Guided Bone Regeneration is the titanium foil, as it can be shaped according to the bone defect. Furthermore, its exposition in the oral cavity does not impair the procedure. We report on five clinical cases in order to explain the management of blood clots in combination with titanium foil barriers in different clinical settings. Besides being the best choice to protect the clot, the titanium foil represents an excellent barrier that is useful in GBR due to its biocompatibility, handling, and mechanical strength properties. The clot alone is the best natural scaffold to obtain the ideal bone quality and avoid the persistence of not-resorbed granules of filler materials in the newly regenerated bone. Even though clot contraction still needs to be improved, as it impacts the volume of the regenerated bone, future studies in GBR should be inspired by the clot and its fundamental properties.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zimo Zhou ◽  
Mohammad Showkat Hossain ◽  
Da Liu

AbstractOsteogenic differentiation and bone regeneration are complex processes involving multiple genes and multiple steps. In this review, we summarize the effects of the long noncoding RNA (lncRNA) H19 on osteogenic differentiation.Osteogenic differentiation includes matrix secretion and calcium mineralization as hallmarks of osteoblast differentiation and the absorption of calcium and phosphorus as hallmarks of osteoclast differentiation. Mesenchymal stem cells (MSCs) form osteoprogenitor cells, pre-osteoblasts, mature osteoblasts, and osteocytes through induction and differentiation. lncRNAs regulate the expression of coding genes and play essential roles in osteogenic differentiation and bone regeneration. The lncRNA H19 is known to have vital roles in osteogenic induction.This review highlights the role of H19 as a novel target for osteogenic differentiation and the promotion of bone regeneration.


1919 ◽  
Vol 29 (1) ◽  
pp. 125-131
Author(s):  
Herbert D. Taylor ◽  
Marianne G. Stebbins

This work demonstrates that the chlorinated antiseptics have no power to penetrate blood clots and destroy bacteria therein contained. Correspondingly, blood clots may protect virulent bacteria for a long period of time and the organisms properly planted will be able to proliferate in a normal manner.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 124
Author(s):  
Ana Paula Farnezi Bassi ◽  
Vinícius Ferreira Bizelli ◽  
Tamires Mello Francatti ◽  
Ana Carulina Rezende de Moares Ferreira ◽  
Járede Carvalho Pereira ◽  
...  

Biomaterials for use in guided bone regeneration (GBR) are constantly being investigated and developed to improve clinical outcomes. The present study aimed to comparatively evaluate the biological performance of different membranes during the bone healing process of 8 mm critical defects in rat calvaria in order to assess their influence on the quality of the newly formed bone. Seventy-two adult male rats were divided into three experimental groups (n = 24) based on the membranes used: the CG—membrane-free control group (only blood clot, negative control), BG—porcine collagen membrane group (Bio-Guide®, positive control), and the PCL—polycaprolactone (enriched with 5% hydroxyapatite) membrane group (experimental group). Histological and histometric analyses were performed at 7, 15, 30, and 60 days postoperatively. The quantitative data were analyzed by two-way ANOVA and Tukey’s test (p < 0.05). At 7 and 15 days, the inflammatory responses in the BG and PCL groups were significantly different (p < 0.05). The PCL group, at 15 days, showed a large area of newly formed bone. At 30 and 60 days postoperatively, the PCL and BG groups exhibited similar bone healing, including some specimens showing complete closure of the critical defect (p = 0.799). Thus, the PCL membrane was biocompatible, and has the potential to help with GBR procedures.


2022 ◽  
Author(s):  
Ting Song ◽  
Jianhua Zhou ◽  
Ming Shi ◽  
Liuyang Xuan ◽  
Huamin Jiang ◽  
...  

Scaffold microstructure is important for bone tissue engineering. Failure to synergistically imitate the hierarchical microstructure of bone component, such as osteon with concentric multilayers assembled by nanofibers, hindered the performance...


Sign in / Sign up

Export Citation Format

Share Document