scholarly journals Surface Modification of Porous Polyethylene Implants with an Albumin-Based Nanocarrier-Release System

Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1485
Author(s):  
Jonas Eckrich ◽  
Niklas Hoormann ◽  
Erik Kersten ◽  
Keti Piradashvili ◽  
Frederik R. Wurm ◽  
...  

Background: Porous polyethylene (PPE) implants are used for the reconstruction of tissue defects but have a risk of rejection in case of insufficient ingrowth into the host tissue. Various growth factors can promote implant ingrowth, yet a long-term gradient is a prerequisite for the mediation of these effects. As modification of the implant surface with nanocarriers may facilitate a long-term gradient by sustained factor release, implants modified with crosslinked albumin nanocarriers were evaluated in vivo. Methods: Nanocarriers from murine serum albumin (MSA) were prepared by an inverse miniemulsion technique encapsulating either a low- or high-molar mass fluorescent cargo. PPE implants were subsequently coated with these nanocarriers. In control cohorts, the implant was coated with the homologue non-encapsulated cargo substance by dip coating. Implants were consequently analyzed in vivo using repetitive fluorescence microscopy utilizing the dorsal skinfold chamber in mice for ten days post implantation. Results: Implant-modification with MSA nanocarriers significantly prolonged the presence of the encapsulated small molecules while macromolecules were detectable during the investigated timeframe regardless of the form of application. Conclusions: Surface modification of PPE implants with MSA nanocarriers results in the alternation of release kinetics especially when small molecular substances are used and therefore allows a prolonged factor release for the promotion of implant integration.

Author(s):  
Vamsi Krishna Balla ◽  
Mitun Das ◽  
Someswar Datta ◽  
Biswanath Kundu

This chapter examines the importance of surface characteristics such as microstructure, composition, crystallographic texture, and surface free energy in achieving desired biocompatibility and tribological properties thereby improving in vivo life of artificial articulating implants. Current implants often fail prematurely due to inadequate mechanical, tribological, biocompatibility, and osseointegration properties, apart from issues related to design and surgical procedures. For long-term in vivo stability, artificial implants intended for articulating joint replacement must exhibit long-term stable articulation surface without stimulating undesirable in vivo effects. Since the implant's surface plays a vital and decisive role in their response to biological environment, and vice versa, surface modification of implants assumes a significant importance. Therefore, overview on important surface modification techniques, their capabilities, properties of modified surfaces/implants are presented in the chapter. The clinical performance of surface modified implants and new surfaces for potential next-generation articulating implant applications are discussed at the end.


2014 ◽  
Vol 8 (2) ◽  
pp. 113-118 ◽  
Author(s):  
A Kumar ◽  
V Kumar ◽  
M Goel ◽  
R Mehta ◽  
G Bhayana ◽  
...  

ABSTRACT Biological fixation between the dental implant surfaces and jaw bones should be considered a prerequisite for the long-term success of implant-supported prostheses. The implant surface modifications gained an important and decisive place in implant research over the last years. Nowadays, a large number of implant types with a great variety of surface properties and other features are commercially available and have to be treated with caution. Although surface modifications have been shown to enhance osseointegration at early implantation times, for example, the clinician should look for research evidence before selecting a dental implant for a specific use.


Author(s):  
Karthikeyan Subramani

This manuscript reviews about titanium surface modification techniques for its application in orthopaedic and dental implants. There are a few limitations in the long term prognosis of orthopaedic and dental implants. Poor osseointegration with bone, periimplant infection leading to implant failure and short term longevity demanding revision surgery, are to mention a few. Micro- and nanoscale modification of titanium surface using physicochemical, morphological and biochemical approaches have resulted in higher bone to implant contact ratio and improved osseointegration. With recent advances in micro, nano-fabrication techniques and multidisciplinary research studies focusing on bridging biomaterials for medical applications, TiO2 nanotubes have been extensively studied for implant applications. The need for titanium implant surface that can closely mimic the nanoscale architecture of human bone has become a priority. For such purpose, TiO2 nanotubes of different dimensions and architectural fashions at the nanoscale level are being evaluated. This manuscript discusses in brief about the in-vitro and in-vivo studies on titanium surface modification techniques. This manuscript also addresses the recent studies done on such nanotubular surfaces for the effective delivery of osteoinductive growth factors and anti bacterial/ anti inflammatory drugs to promote osseointegration and prevent peri-implant infection.


2015 ◽  
Vol 15 (10) ◽  
pp. 7976-7979 ◽  
Author(s):  
Dong Seok Seo ◽  
Jong Kook Lee ◽  
Kyu Hong Hwang

Hydroxyapatite (HA) is widely used as a bioactive ceramics as it forms a chemical bond with bone. However, the drawback to using this material is its inferior mechanical properties. In this research, surface corrosion and disintegration of nanoscaled HA in a dog were studied, and the mechanism by which phase-pure HA dissolved In Vivo was investigated. Biological properties of HA In Vivo are affected by the grain-boundary dissolution followed by a surface corrosion and microstructural disintegration. This kind of dissolution process, apparently evidenced at the grain boundary, causes particle generation, which indicates that both long-term bone in-growth and mechanical properties can dramatically deteriorate. Implant dissolution by osteoclasts In Vivo is also observed on the surface of hydroxyapatite. Implant surface showed an aggressive corrosion by an osteoclast resorption. Severe and deeper dissolution underwent close to osteoclast resulting in formation of smaller and more round particle shape.


2021 ◽  
Author(s):  
Boxun Liu ◽  
Zhizhong Jin ◽  
Haiyan Chen ◽  
Lun Liang ◽  
Yao Li ◽  
...  

Abstract Electrospun membranes are attracting interest as a drug delivery system because of their material composition flexibility and versatile drug loading. In this study, the electrospun membrane was loaded with doxorubicin (DOX) via electrostatic adsorption for long-term drug delivery. DOX loading process was optimized by varying temperature, time, drug concentration, pH, and ionic strength of solutions. The loading process did not impair the structural properties of the membrane. Next, we investigated the drug release kinetics using spectroscopic techniques. The composite membranes released 22% of the adsorbed DOX over the first 48 h, followed by a slower and sustained release over 4 weeks. The DOX release was sensitive to acidic solutions that the release rate at pH 6.0 was 1.27 times as that at pH 7.4. The DOX-loaded membranes were found to be cytotoxic to U-87 MG cells in vitro that decreased the cell viability from 82.92% to 25.49% from 24 h to 72 h of co-incubation. These membranes showed strong efficacy in suppressing tumour growth in vivo in glioblastoma-bearing mice that decreased the tumour volume by 77.33% compared to blank membrane-treated group on Day 20. In conclusion, we have developed an effective approach to load DOX within a clinically-approved poly (L-lactic acid)/gelatin membrane for local and long-term delivery of DOX for the treatment of glioblastoma.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Pilar Valderrama ◽  
Thomas G. Wilson Jr

Purpose. Peri-implantitis is one of the major causes of implant failure. The detoxification of the implant surface is necessary to obtain reosseointegration. The aim of this review was to summarize in vitro and in vivo studies as well as clinical trials that have evaluated surgical approaches for detoxification of the implant body surfaces.Materials and Methods. A literature search was conducted using MEDLINE (PubMed) from 1966 to 2013. The outcome variables were the ability of the therapeutic method to eliminate the biofilm and endotoxins from the implant surface, the changes in clinical parameters, radiographic bone fill, and histological reosseointegration.Results. From 574 articles found, 76 were analyzed. The findings, advantages, and disadvantages of using mechanical, chemical methods and lasers are discussed.Conclusions. Complete elimination of the biofilms is difficult to achieve. All therapies induce changes of the chemical and physical properties of the implant surface. Partial reosseointegration after detoxification has been reported in animals. Combination protocols for surgical treatment of peri-implantitis in humans have shown some positive clinical and radiographic results, but long-term evaluation to evaluate the validity and reliability of the techniques is needed.


2020 ◽  
Vol 10 (23) ◽  
pp. 8582
Author(s):  
Ping-Jen Hou ◽  
Syamsiah Syam ◽  
Wen-Chien Lan ◽  
Keng-Liang Ou ◽  
Bai-Hung Huang ◽  
...  

This study aimed to evaluate the impact of surface-modified biomedical titanium (Ti) dental implant on osseointegration. The surfaces were modified using an innovative dip-coating technique (IDCT; sandblasted, large-grit, and acid-etched, then followed by coating with the modified pluronic F127 biodegradable polymer). The surface morphology and hemocompatibility evaluations were investigated by field-emission scanning electron microscopy, while the contact analysis was observed by goniometer. The IDCT-modified Ti implant was also implanted in patients with missing teeth by single-stage surgical procedure then observed immediately and again four months after placement by cone-beam computerized tomography (CBCT) imaging. It was found that the IDCT-modified Ti implant was rougher than the dental implant without surface modification. Contact angle analysis showed the IDCT-modified Ti implant was lower than the dental implant without surface modification. The hemocompatibility evaluations showed greater red blood cell aggregation and fibrin filament formation on the IDCT-modified Ti implant. The radiographic and CBCT image displayed new bone formation at four months after the IDCT-modified Ti implant placement. Therefore, this study suggests that the IDCT-modified Ti dental implant has great potential to accelerate osseointegration.


Nanomedicine ◽  
2019 ◽  
Vol 14 (23) ◽  
pp. 3035-3055 ◽  
Author(s):  
Gabriel Alfranca ◽  
Lilianne Beola ◽  
Yanlei Liu ◽  
Lucía Gutiérrez ◽  
Amin Zhang ◽  
...  

Aim: To study the difference in biodistribution of gold nanoprisms (NPr) and nanorods (NR), PEGylated to ensure colloidal stability. Materials & methods: Surface changes were studied for nanoparticles in different media, while the biodistribution was quantified and imaged in vivo. Results: Upon interaction with the mouse serum, NR showed more abrupt changes in surface properties than NPr. In the in vivo tests, while NPr accumulated similarly in the spleen and liver, NR showed much higher gold presence in the spleen than in liver; together with some accumulation in kidneys, which was nonexistent in NPr. NPr were cleared from the tissues 2 months after administration, while NR were more persistent. Conclusion: The results suggest that the differential biodistribution is caused by size-/shape-dependent interactions with the serum.


2020 ◽  
Vol 14 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Lee Kian Khoo ◽  
Sirichai Kiattavorncharoen ◽  
Verasak Pairuchvej ◽  
Nisanat Lakkhanachatpan ◽  
Natthamet Wongsirichat ◽  
...  

Introduction: Implant surface modification methods have recently involved laser treatment to achieve the desired implant surface characteristics. Meanwhile, surface modification could potentially introduce foreign elements to the implant surface during the manufacturing process. Objectives: The study aimed to investigate the surface chemistry and topography of commercially available laser-modified titanium implants, together with evaluating the cell morphology and cell adhesion of human fetal osteoblast (hFOB) seeded onto the same implants. Method: Six (6) samples of commercially available laser-modified titanium implants were investigated. These implants were manufactured by two different companies. Three (3) implants were made from commercially pure grade 4 Titanium (Brand X); and three were made from grade 5 Ti6Al4V (Brand Y). The surface topography of these implants was analyzed by scanning electron microscope (SEM) and the surface chemistry was evaluated with electron dispersive x-ray spectroscopy(EDS). Human fetal osteoblasts were seeded onto the implant fixtures to investigate the biocompatibility and adhesion. Results & Discussion: Brand X displayed dark areas under SEM while it was rarely found on brand Y. These dark areas were consistent with their organic matter. The hFOB cell experiments revealed cell adhesion with filopodia on Brand X samples which is consistent with cell maturation. The cells on Brand Y were morphologically round and lacked projections, one sample was devoid of any noticeable cells under SEM. Cell adhesion was observed early at 48 hrs in laser-irradiated titanium fixtures from both the brands. Conclusion: The presence of organic impurities in Brand X should not be overlooked because disruption of the osseointegration process may occur due to the rejection of the biomaterial in an in-vivo model. Nevertheless, there was insufficient evidence to link implant failure directly with carbon contaminated implant surfaces. Further studies to determine the toxicity of Vanadium from Ti6Al4V in an in-vivo environment should indicate the reason for different cell maturation.


2018 ◽  
pp. 859-910
Author(s):  
Vamsi Krishna Balla ◽  
Mitun Das ◽  
Someswar Datta ◽  
Biswanath Kundu

This chapter examines the importance of surface characteristics such as microstructure, composition, crystallographic texture, and surface free energy in achieving desired biocompatibility and tribological properties thereby improving in vivo life of artificial articulating implants. Current implants often fail prematurely due to inadequate mechanical, tribological, biocompatibility, and osseointegration properties, apart from issues related to design and surgical procedures. For long-term in vivo stability, artificial implants intended for articulating joint replacement must exhibit long-term stable articulation surface without stimulating undesirable in vivo effects. Since the implant's surface plays a vital and decisive role in their response to biological environment, and vice versa, surface modification of implants assumes a significant importance. Therefore, overview on important surface modification techniques, their capabilities, properties of modified surfaces/implants are presented in the chapter. The clinical performance of surface modified implants and new surfaces for potential next-generation articulating implant applications are discussed at the end.


Sign in / Sign up

Export Citation Format

Share Document