scholarly journals Macrophages and Iron: A Special Relationship

Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1585
Author(s):  
Stefania Recalcati ◽  
Gaetano Cairo

Macrophages perform a variety of different biological functions and are known for their essential role in the immune response. In this context, a principal function is phagocytic clearance of pathogens, apoptotic and senescent cells. However, the major targets of homeostatic phagocytosis by macrophages are old/damaged red blood cells. As such, macrophages play a crucial role in iron trafficking, as they recycle the large quantity of iron obtained by hemoglobin degradation. They also seem particularly adapted to handle and store amounts of iron that would be toxic to other cell types. Here, we examine the specific and peculiar iron metabolism of macrophages.

2009 ◽  
Vol 101 (03) ◽  
pp. 439-451 ◽  
Author(s):  
Laurent Burnier ◽  
Pierre Fontana ◽  
Brenda R. Kwak ◽  
Anne Angelillo-Scherrer

SummaryConsiderable interest for cell-derived microparticles has emerged, pointing out their essential role in haemostatic response and their potential as disease markers, but also their implication in a wide range of physiological and pathological processes. They derive from different cell types including platelets – the main source of microparticles – but also from red blood cells, leukocytes and endothelial cells, and they circulate in blood. Despite difficulties encountered in analyzing them and disparities of results obtained with a wide range of methods, microparticle generation processes are now better understood. However, a generally admitted definition of microparticles is currently lacking. For all these reasons we decided to review the literature regarding microparticles in their widest definition, including ectosomes and exosomes, and to focus mainly on their role in haemostasis and vascular medicine.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Stuart T. Fraser ◽  
Robyn G. Midwinter ◽  
Birgit S. Berger ◽  
Roland Stocker

The first mature cells to arise in the developing mammalian embryo belong to the erythroid lineage. This highlights the immediacy of the need for red blood cells during embryogenesis and for survival. Linked with this pressure is the necessity of the embryo to obtain and transport iron, synthesize hemoglobin, and then dispose of the potentially toxic heme via the stress-induced protein heme oxygenase-1 (HO-1, encoded byHmox1in the mouse). Null mutation ofHmox1results in significant embryonic mortality as well as anemia and defective iron recycling. Here, we discuss the interrelated nature of this critical enzyme with iron trafficking, erythroid cell function, and embryonic survival.


Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 361
Author(s):  
Valentina Valenzuela-Muñoz ◽  
Bárbara P. Benavente ◽  
Antonio Casuso ◽  
Yeny Leal ◽  
Cristian Gallardo-Escárate

Infection processes displayed by pathogens require the acquisition of essential inorganic nutrients and trace elements from the host to survive and proliferate. Without a doubt, iron is a crucial trace metal for all living organisms and also a pivotal component in the host–parasite interactions. In particular, the host reduces the iron available to face the infectious disease, increasing iron transport proteins’ expression and activating the heme synthesis and degradation pathways. Moreover, recent findings have suggested that iron metabolism modulation in fish promotes the immune response by reducing cellular iron toxicity. We hypothesized that recombinant proteins related to iron metabolism could modulate the fish’s immune system through iron metabolism and iron-responsive genes. Here a chimeric iron transport protein (IPath®) was bioinformatically designed and then expressed in a recombinant bacterial system. The IPath® protein showed a significant chelating activity under in vitro conditions and biological activity. Taking this evidence, a vaccine candidate based on IPath® was evaluated in Atlantic salmon challenged with three different fish pathogens. Experimental trials were conducted using two fish groups: one immunized with IPath® and another injected with adjutant as the control group. After 400 accumulated thermal units (ATUs), two different infection trials were performed. In the first one, fish were infected with the bacterium Aeromonas salmonicida, and in a second trial, fish were exposed to the ectoparasite Caligus rogercresseyi and subsequently infected with the intracellular bacterium Piscirickettsia salmonis. Fish immunized with IPath® showed a significant delay in the mortality curve in response to A. salmonicida and P. salmonis infections. However, no significant differences between infected and control fish groups were observed at the end of the experiment. Notably, sea lice burden reduction was observed in vaccinated Atlantic salmon. Transcriptional analysis evidenced a high modulation of iron-homeostasis-related genes in fish vaccinated with IPath® compared to the control group during the infection. Moreover, increasing expression of Atlantic salmon IgT was associated with IPath® immunization. This study provides evidence that the IPath® protein could be used as an antigen or booster in commercial fish vaccines, improving the immune response against relevant pathogens for salmon aquaculture.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S326-S327
Author(s):  
Simone A Thair ◽  
Yudong He ◽  
Yehudit Hasin-Brumshtein ◽  
Suraj Sakaram ◽  
Rushika R Pandya ◽  
...  

Abstract Background COVID-19 is a pandemic caused by the SARS-CoV-2 virus that shares and differs in clinical characteristics of known viral infections. Methods We obtained RNAseq profiles of 62 prospectively enrolled COVID-19 patients and 24 healthy controls (HC). We collected 23 independent studies profiling 1,855 blood samples from patients covering six viruses (influenza, RSV, HRV, Ebola, Dengue and SARS-CoV-1). We studied host whole-blood transcriptomic responses in COVID-19 compared to non-COVID-19 viral infections to understand similarities and differences in host response. Gene signature threshold was absolute effect size ≥1, FDR ≤ 0.05%. Results Differential gene expression of COVID-19 vs HC are highly correlated with non-COVID-19 vs HC (r=0.74, p< 0.001). We discovered two gene signatures: COVID-19 vs HC (2002 genes) (COVIDsig) and non-COVID-19 vs HC (635 genes) (nonCOVIDsig). Pathway analysis of over-expressed signature genes in COVIDsig or nonCOVIDsig identified similar pathways including neutrophil activation, innate immune response, immune response to viral infection and cytokine production. Conversely, for under-expressed genes, pathways indicated repression of lymphocyte differentiation and activation (Fig1). Intersecting the two gene signatures found two genes significantly oppositely regulated (ACO1, ATL3). We derived a third gene signature using COCONUT to compare COVID-19 to non-COVID-19 viral infections (416 genes) (Fig2). Pathway analysis did not result in significant enrichment, suggesting identification of novel biology (Fig1). Statistical deconvolution of bulk transcriptomic data found M1 macrophages, plasmacytoid dendritic cells, CD14+ monocytes, CD4+ T cells and total B cells changed in the same direction across COVID-19 and non-COVID-19 infections. Cell types that increased in COVID-19 relative to non-COVID-19 were CD56bright NK cells, M2 macrophages and total NK cells. Those that decreased in non-COVID-19 relative to COVID-19 were CD56dim NK cells & memory B cells and eosinophils (Fig3). Figure 1 Figure 2 Figure 3 Conclusion The concordant and discordant responses mapped here provide a window to explore the pathophysiology of COVID-19 vs other viral infections and show clear differences in signaling pathways and cellularity as part of the host response to SARS-CoV-2. Disclosures Simone A. Thair, PhD, Inflammatix, Inc. (Employee, Shareholder) Yudong He, PhD, Inflammatix Inc. (Employee) Yehudit Hasin-Brumshtein, PhD, Inflammatix (Employee, Shareholder) Suraj Sakaram, MS in Biochemistry and Molecular Biology, Inflammatix (Employee, Other Financial or Material Support, stock options) Rushika R. Pandya, MS, Inflammatix Inc. (Employee, Shareholder) David C. Rawling, PhD, Inflammatix Inc. (Employee, Shareholder) Purvesh Khatri, PhD, Inflammatix Inc. (Shareholder) Timothy Sweeney, MD, PHD, Inflammatix, Inc. (Employee, Shareholder)


Blood ◽  
1978 ◽  
Vol 51 (4) ◽  
pp. 601-610 ◽  
Author(s):  
CA Pugsley ◽  
IJ Forbes ◽  
AA Morley

Abstract The immunology of chronic hypoplastic marrow failure (CHMF, aplastic anemia) was studied in an experimental murine model of the disease induced by busulfan. B lymphocytes of peripheral blood, spleen, and bone marrow were reduced to 30%–40% and T lymphocytes of thymus, spleen, marrow, and blood were decreased to 20%–70% of control values. IgG and IgM antibody titer to sheep red blood cells were reduced to one- third of control levels, and splenic IgG, but not IgM, plaque-forming cells were fewer on day 7 after antigen stimulation. The proliferative responses to phytohemagglutinin or concanavalin A were reduced in cultures of peripheral blood lymphocytes, splenic lymphocytes, and thymocytes, and cutaneous delayed-type hypersensitivity induced by dinitrofluorobenze was not detected in mice with CHMF. The results demonstrate disturbance of a variety of cellular and humoral functions and suggest that the disturbance was due to quantitative and possibly qualitative abnormalities of the cell types subserving these functions. The results suggest that residual cell injury, the lesion underlying experimental CHMF, is not confined to the myeloid stem cell but also involved cells of the lymphoid series.


2002 ◽  
Vol 203 (2) ◽  
pp. 204-206 ◽  
Author(s):  
K-G. Lee ◽  
A. Braun ◽  
I. Chaikhoutdinov ◽  
J. DeNobile ◽  
M. Conrad ◽  
...  

2021 ◽  
Author(s):  
Andrew D. Beale ◽  
Priya Crosby ◽  
Utham K. Valekunja ◽  
Rachel S. Edgar ◽  
Johanna E. Chesham ◽  
...  

AbstractCellular circadian rhythms confer daily temporal organisation upon behaviour and physiology that is fundamental to human health and disease. Rhythms are present in red blood cells (RBCs), the most abundant cell type in the body. Being naturally anucleate, RBC circadian rhythms share key elements of post-translational, but not transcriptional, regulation with other cell types. The physiological function and developmental regulation of RBC circadian rhythms is poorly understood, however, partly due to the small number of appropriate techniques available. Here, we extend the RBC circadian toolkit with a novel biochemical assay for haemoglobin oxidation status, termed “Bloody Blotting”. Our approach relies on a redox-sensitive covalent haem-haemoglobin linkage that forms during cell lysis. Formation of this linkage exhibits daily rhythms in vitro, which are unaffected by mutations that affect the timing of circadian rhythms in nucleated cells. In vivo, haemoglobin oxidation rhythms demonstrate daily variation in the oxygen-carrying and nitrite reductase capacity of the blood, and are seen in human subjects under controlled laboratory conditions as well as in freely-behaving humans. These results extend our molecular understanding of RBC circadian rhythms and suggest they serve an important physiological role in gas transport.


Sign in / Sign up

Export Citation Format

Share Document