scholarly journals PD-L1 Expression Correlated with p53 Expression in Pediatric Glioblastoma Multiforme

2021 ◽  
Vol 11 (2) ◽  
pp. 262
Author(s):  
Jakub Litak ◽  
Wiesława Grajkowska ◽  
Justyna Szumiło ◽  
Paweł Krukow ◽  
Ryszard Maciejewski ◽  
...  

High-grade gliomas are infrequent in the pediatric population compared to adults, nevertheless, mortality and morbidity caused by malignant gliomas in this group of patients remain significant. PD-L1 and PD-1 Immune checkpoints (IC) molecules maintain immunological balance between activation and suppression. Eighteen patients with a histopathological diagnosis of pediatric glioblastoma multiforme (GBM, WHO IV) were studied. In total, PD-L1 expression was detected in 8 patients (44%). The molecular aspect of IC and immunotherapy targeted on PD-1/PD-L1 axis in pediatric population may be a promising adjuvant therapy in pediatric glioblastoma multiform treatment, however, this subject requires further investigation.

2017 ◽  
Vol 43 (1) ◽  
pp. 108-119 ◽  
Author(s):  
Giada Catalogna ◽  
Cristina Talarico ◽  
Vincenzo Dattilo ◽  
Vincenzo Gangemi ◽  
Ferdinando Calabria ◽  
...  

Background/Aims: The importance of copper in the metabolism of cancer cells has been widely studied in the last 20 years and a clear-cut association between copper levels and cancer deregulation has been established. Copper-64, emitting positrons and β-radiations, is indicated for the labeling of a large number of molecules suitable for radionuclide imaging as well as radionuclide therapy. Glioblastoma multiforme (GBM) is the CNS tumor with the worse prognosis, characterized by high number of recurrences and strong resistance to chemo-radio therapy, strongly affecting patients survival. We have recently discovered and studied the small molecule SI113, as inhibitor of SGK1, a serine/threonine protein kinase, that affects several neoplastic phenotypes and signaling cascades. The SI113-dependent SGK1 inhibition induces cell death, blocks proliferation, perturbs cell cycle progression and restores chemo-radio sensibility by modulating SGK1-related substrates. In the present paper we aim to characterize the combined effects of 64CuCl2 and SI113 on human GBM cell lines with variable p53 expression. Methods: Cell viability, cell death and stress/authopagic related pathways were then analyzed by FACS and WB-based assays, after exposure to SI113 and/or 64CuCl2. Results: We demonstrate here, that i) 64CuCl2 is able to induce a time and dose dependent modulation of cell viability (with different IC50 values) in highly malignant gliomas and that the co-treatment with SI113 leads to ii) additive/synergistic effects in terms of cell death; iii) enhancement of the effects of ionizing radiations, probably by a TRC1 modulation; iv) modulation of the autophagic response. Conclusions: Evidence reported here underlines the therapeutic potential of the combined treatment with SI113 and 64CuCl2 in GBM cells.


Rare Tumors ◽  
2017 ◽  
Vol 9 (2) ◽  
pp. 81-84
Author(s):  
Vivek Immanuel ◽  
Pamela A. Kingsley ◽  
Preety Negi ◽  
Roma Isaacs ◽  
Sarvpreet S. Grewal

Malignant gliomas account for 35-45% of primary brain tumors; among these glioblastoma multiforme (GBM) is the most common adult brain tumor constituting approximately 85%. Its incidence is quite less in the pediatric population and treatment of these patients is particularly challenging. Exposure to ionizing radiation is the only environmental factor found to have any significant association with GBM. Several genetic alterations associated with GBM in adults have been well documented such as epidermal growth factor receptor amplification, overexpression of mouse double minute 2 homolog also known as E3 ubiquitin-protein ligase, Phosphatase and tensin homolog gene mutation, loss of heterozygosity of chromosome 10p and isocitrate dehydrogenase-1 mutation. However, data on genetic mutations in pediatric GBM is still lacking. Exophytic brain stem gliomas are rare tumors and are usually associated with a poor prognosis. The most effective treatment in achieving long-term survival in such patients, is surgical excision of the tumor and then chemoradiotherapy followed by adjuvant chemotherapy by temozolomide. This schedule is the standard treatment for GBM patients. In view of the rarity of pediatric GBM, we report here a case of pontine GBM in a 5-year-old girl.


2015 ◽  
Vol 29 (3) ◽  
pp. 295-308
Author(s):  
Adriana Baritchii ◽  
A. Gubian ◽  
St.I. Florian

Abstract Malignant gliomas are aggressive brain cancers. After many decades of intensive research they represent a major cause of cancer related mortality and morbidity. Management of malignant gliomas is very difficult. None of the current treatments are curative. High grade gliomas are optimally treated with surgery followed by radiotherapy and chemotherapy. The impact of surgery on progression free survival and overall survival was a constant preoccupation and debate for decades among neurosurgeons. Different studies published in the last 25 years have provided evidence that the extent of resection of high grade gliomas can influence time to progression and median survival, although so far there is no class I prospective randomized trial to fully answer this question. Some of the most important studies are reviewed here. The modern neurosurgery relay on some tools that proved to be very helpful in guiding the surgeon to achieve the maximal tumoral cytoreduction with minimum impact on the brain’s eloquent areas. iMRI has been proved to be safe and became an important tool during tumor surgery, used alone or in conjuction with other important techniques: intraoperative neurophysiology, awake cortical mapping, 5-ALA fluorescence etc. Although so far the prognostic of high grade gliomas is still disappointing, further understanding of the biology of these tumors and a patient-tailored treatment could be the keys of finding a cure in the future.


2014 ◽  
Vol 1 (4) ◽  
pp. 145-157 ◽  
Author(s):  
Magimairajan Issai Vanan ◽  
David D. Eisenstat

Abstract High-grade gliomas (HGGs) constitute ∼15% of all primary brain tumors in children and adolescents. Routine histopathological diagnosis is based on tissue obtained from biopsy or, preferably, from the resected tumor itself. The majority of pediatric HGGs are clinically and biologically distinct from histologically similar adult malignant gliomas; these differences may explain the disparate responses to therapy and clinical outcomes when comparing children and adults with HGG. The recently proposed integrated genomic classification identifies 6 distinct biological subgroups of glioblastoma (GBM) throughout the age spectrum. Driver mutations in genes affecting histone H3.3 (K27M and G34R/V) coupled with mutations involving specific proteins (TP53, ATRX, DAXX, SETD2, ACVR1, FGFR1, NTRK) induce defects in chromatin remodeling and may play a central role in the genesis of many pediatric HGGs. Current clinical practice in pediatric HGGs includes surgical resection followed by radiation therapy (in children aged > 3 years) with concurrent and adjuvant chemotherapy with temozolomide. However, these multimodality treatment strategies have had a minimal impact on improving survival. Ongoing clinical trials are investigating new molecular targets, chemoradiation sensitization strategies, and immunotherapy. Future clinical trials of pediatric HGG will incorporate the distinction between GBM molecular subgroups and stratify patients using group-specific biomarkers.


2019 ◽  
Vol 65 (1) ◽  
pp. 56-62
Author(s):  
Alisa Villert ◽  
Larisa Kolomiets ◽  
Natalya Yunusova ◽  
Yevgeniya Fesik

High-grade ovarian carcinoma is a histopathological diagnosis, however, at the molecular level, ovarian cancer represents a heterogeneous group of diseases. Studies aimed at identifying molecular genetic subtypes of ovarian cancer are conducted in order to find the answer to the question: can different molecular subgroups influence the choice of treatment? One of the achievements in this trend is the recognition of the dualistic model that categorizes various types of ovarian cancer into two groups designated high-grade (HG) and low-grade (LG) tumors. However, the tumor genome sequencing data suggest the existence of 6 ovarian carcinoma subtypes, including two LG and four HG subtypes. Subtype C1 exhibits a high stromal response and the lowest survival. Subtypes C2 and C4 demonstrate higher number of intratumoral CD3 + cells, lower stromal gene expression and better survival than sybtype C1. Subtype C5 (mesenchymal) is characterized by mesenchymal cells, over-expression of N-cadherin and P-cadherin, low expression of differentiation markers, and lower survival rates than C2 and C4. The use of a consensus algorithm to determine the subtype allows identification of only a minority of ovarian carcinomas (approximately 25%) therefore, the practical importance of this classification requires additional research. There is evidence that it makes sense to randomize tumors into groups with altered expression of angiogenic genes and groups with overexpression of the immune response genes, as in the angiogenic group there is a comparative superiority in terms of survival. The administration of bevacizumab in the angiogenic group improves survival, while the administration of bevacizumab in the immune group even worsens the outcome. Molecular subtypes with worse survival rates (proliferative and mesenchymal) also benefit most from bevacizumab treatment. This review focuses on some of the advances in understanding molecular, cellular, and genetic changes in ovarian carcinomas with the results achieved so far regarding the formulation of molecular subtypes of ovarian cancer, however further studies are needed.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 324
Author(s):  
Jacob P. Fisher ◽  
David C. Adamson

The standard of care (SOC) for high-grade gliomas (HGG) is maximally safe surgical resection, followed by concurrent radiation therapy (RT) and temozolomide (TMZ) for 6 weeks, then adjuvant TMZ for 6 months. Before this SOC was established, glioblastoma (GBM) patients typically lived for less than one year after diagnosis, and no adjuvant chemotherapy had demonstrated significant survival benefits compared with radiation alone. In 2005, the Stupp et al. randomized controlled trial (RCT) on newly diagnosed GBM patients concluded that RT plus TMZ compared to RT alone significantly improved overall survival (OS) (14.6 vs. 12.1 months) and progression-free survival (PFS) at 6 months (PFS6) (53.9% vs. 36.4%). Outside of TMZ, there are four drugs and one device FDA-approved for the treatment of HGGs: lomustine, intravenous carmustine, carmustine wafer implants, bevacizumab (BVZ), and tumor treatment fields (TTFields). These treatments are now mainly used to treat recurrent HGGs and symptoms. TTFields is the only treatment that has been shown to improve OS (20.5 vs. 15.6 months) and PFS6 (56% vs. 37%) in comparison to the current SOC. TTFields is the newest addition to this list of FDA-approved treatments, but has not been universally accepted yet as part of SOC.


2021 ◽  
Vol 22 (8) ◽  
pp. 4109
Author(s):  
Mankgopo M. Kgatle ◽  
Tebatso M. G. Boshomane ◽  
Ismaheel O. Lawal ◽  
Kgomotso M. G. Mokoala ◽  
Neo P. Mokgoro ◽  
...  

Emerging research demonstrates that co-inhibitory immune checkpoints (ICs) remain the most promising immunotherapy targets in various malignancies. Nonetheless, ICIs have offered insignificant clinical benefits in the treatment of advanced prostate cancer (PCa) especially when they are used as monotherapies. Current existing PCa treatment initially offers an improved clinical outcome and overall survival (OS), however, after a while the treatment becomes resistant leading to aggressive and uncontrolled disease associated with increased mortality and morbidity. Concurrent combination of the ICIs with radionuclides therapy that has rapidly emerged as safe and effective targeted approach for treating PCa patients may shift the paradigm of PCa treatment. Here, we provide an overview of the contextual contribution of old and new emerging inhibitory ICs in PCa, preclinical and clinical studies supporting the use of these ICs in treating PCa patients. Furthermore, we will also describe the potential of using a combinatory approach of ICIs and radionuclides therapy in treating PCa patients to enhance efficacy, durable cancer control and OS. The inhibitory ICs considered in this review are cytotoxic T-lymphocyte antigen 4 (CTLA4), programmed cell death 1 (PD1), V-domain immunoglobulin suppressor of T cell activation (VISTA), indoleamine 2,3-dioxygenase (IDO), T cell Immunoglobulin Domain and Mucin Domain 3 (TIM-3), lymphocyte-activation gene 3 (LAG-3), T cell immunoreceptor with Ig and ITIM domains (TIGIT), B7 homolog 3 (B7-H3) and B7-H4.


2021 ◽  
pp. 112067212110307
Author(s):  
Raquel María Moral ◽  
Carlos Monteagudo ◽  
Javier Muriel ◽  
Lucía Moreno ◽  
Ana María Peiró

Introduction: Conjunctival melanoma is extremely rare in children and has low rates of resolution. Definitive histopathological diagnosis based exclusively on microscopic findings is sometimes difficult. Thus, early diagnosis and adequate treatment are essential to improve clinical outcomes. Clinical case: We present the first case in which the fluorescent in situ hybridization (FISH) diagnostic technique was applied to a 10-year-old boy initially suspected of having amelanotic nevi in his right eye. Based on the 65% of tumor cells with 11q13 (CCND1) copy number gain and 33% with 6p25 (RREB1) gain as measured by the FISH analysis, and on supporting histopathological findings, the diagnosis of conjunctival melanoma could be made. Following a larger re-excision, adjuvant therapy with Mitomycin C (MMC), cryotherapy and an amniotic membrane graft, the patient has remained disease-free during 9 years of long-term follow-up. Case discussion: Every ophthalmologist should remember to consider and not forget the possibility of using FISH analyses during the differential diagnosis of any suspicious conjunctival lesions. Genetic techniques, such as FISH, have led to great advances in the classification of ambiguous lesions. Evidence-based guidelines for diagnosing conjunctival melanoma in the pediatric population are needed to determine the most appropriate strategy for this age group.


2002 ◽  
Vol 20 (24) ◽  
pp. 4684-4691 ◽  
Author(s):  
L. S. Lashford ◽  
P. Thiesse ◽  
A. Jouvet ◽  
T. Jaspan ◽  
D. Couanet ◽  
...  

PURPOSE: To determine the response rate of the malignant gliomas of childhood to an oral, daily schedule of temozolomide. PATIENTS AND METHODS: A multicenter, phase II evaluation of an oral, daily schedule of temozolomide (200 mg/m2 on 5 consecutive days) was undertaken in children with relapsed or progressive, biopsy-proven, high-grade glioma (arm A) and progressive, diffuse, intrinsic brainstem glioma (arm B). Evidence of activity was defined by radiologic evidence of a sustained reduction in tumor size on serial magnetic resonance imaging scans. RESULTS: Fifty-five patients were recruited (34 to arm A and 21 to arm B) and received 215 cycles of chemotherapy. Grade 3/4 thrombocytopenia was the most frequent toxic event (7% of cycles). Prolonged myelosuppression resulted in significant treatment delays and dose reductions (17% and 22% of cycles, respectively). Two toxic deaths were documented and were related to myelosuppression and sepsis in one patient and pneumonia in a second. The overall (best) response rate was 12% for arm A (95% confidence interval [CI], 3 to 28 in the study cohort, and 2 to 31 for eligible patients) and 5% and 6%, respectively, for arm B (95% CI, 0 to 26 in the study cohort, and 0 to 27 for eligible patients). Stabilization of disease was also documented and was most noteworthy for brainstem gliomas, where two patients achieved both radiologic static disease and discontinued steroid medication. CONCLUSION: Despite moderate toxicity, objective response rates to temozolomide have been low, indicating that temozolomide has minimal activity in the high-grade gliomas of childhood.


Sign in / Sign up

Export Citation Format

Share Document