scholarly journals Comparing between Different Sets of Preprocessing, Classifiers, and Channels Selection Techniques to Optimise Motor Imagery Pattern Classification System from EEG Pattern Recognition

2021 ◽  
Vol 12 (1) ◽  
pp. 57
Author(s):  
Francesco Ferracuti ◽  
Sabrina Iarlori ◽  
Zahra Mansour ◽  
Andrea Monteriù ◽  
Camillo Porcaro

The ability to control external devices through thought is increasingly becoming a reality. Human beings can use the electrical signals of their brain to interact or change the surrounding environment and more. The development of this technology called brain-computer interface (BCI) will increasingly allow people with motor disabilities to communicate or use assistive devices to walk, manipulate objects and communicate. Using data from the PhysioNet database, this study implemented a pattern classification system for use in a BCI on 109 healthy volunteers during real movement activities and motor imagery recorded by 64-channels electroencephalography (EEG) system. Different classifiers such as Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Decision Trees (TREE) were applied on different combinations of EEG channels. Starting from two channels (C3, C4 and CP3 and CP4) positioned on the contralateral and ipsilateral sensorimotor cortex, the Region of Interest (RoI) centred on C3/Cp3 and C4/Cp4 and, finally, a data-driven automatic channels selection was tested to explore the best channel combination able to increase the classification accuracy. The results showed that the proposed automatic channels selection was able to significantly improve the performance of each classifier achieving 98% of accuracy for classification of real and imagined hand movement (sensitivity = 97%, specificity = 99%, AUC = 0.99) by SVM. While the accuracy of the classification between the imagery of hand and foot movements was 91% (sensitivity = 87%, specificity = 86%, AUC = 0.93) also with SVM. In the proposed approach, the data-driven automatic channels selection outperforms classical a priori channel selection models such as C3/C4, Cp3/Cp4, or RoIs around those channels with the utmost accuracy to help remove the boundaries of human communication and improve the quality of life of people with disabilities.

2016 ◽  
Vol 2016 ◽  
pp. 1-19 ◽  
Author(s):  
Danilo DonGiovanni ◽  
Lucia Maria Vaina

Extracting functional connectivity patterns among cortical regions in fMRI datasets is a challenge stimulating the development of effective data-driven or model based techniques. Here, we present a novel data-driven method for the extraction of significantly connected functional ROIs directly from the preprocessed fMRI data without relying on a priori knowledge of the expected activations. This method finds spatially compact groups of voxels which show a homogeneous pattern of significant connectivity with other regions in the brain. The method, called Select and Cluster (S&C), consists of two steps: first, a dimensionality reduction step based on a blind multiresolution pairwise correlation by which the subset of all cortical voxels with significant mutual correlation is selected and the second step in which the selected voxels are grouped into spatially compact and functionally homogeneous ROIs by means of a Support Vector Clustering (SVC) algorithm. The S&C method is described in detail. Its performance assessed on simulated and experimental fMRI data is compared to other methods commonly used in functional connectivity analyses, such as Independent Component Analysis (ICA) or clustering. S&C method simplifies the extraction of functional networks in fMRI by identifying automatically spatially compact groups of voxels (ROIs) involved in whole brain scale activation networks.


2020 ◽  
Vol 15 ◽  
Author(s):  
Shuwen Zhang ◽  
Qiang Su ◽  
Qin Chen

Abstract: Major animal diseases pose a great threat to animal husbandry and human beings. With the deepening of globalization and the abundance of data resources, the prediction and analysis of animal diseases by using big data are becoming more and more important. The focus of machine learning is to make computers learn how to learn from data and use the learned experience to analyze and predict. Firstly, this paper introduces the animal epidemic situation and machine learning. Then it briefly introduces the application of machine learning in animal disease analysis and prediction. Machine learning is mainly divided into supervised learning and unsupervised learning. Supervised learning includes support vector machines, naive bayes, decision trees, random forests, logistic regression, artificial neural networks, deep learning, and AdaBoost. Unsupervised learning has maximum expectation algorithm, principal component analysis hierarchical clustering algorithm and maxent. Through the discussion of this paper, people have a clearer concept of machine learning and understand its application prospect in animal diseases.


Author(s):  
Dongxian Yu ◽  
Jiatao Kang ◽  
Zaihui Cao ◽  
Neha Jain

In order to solve the current traffic sign detection technology due to the interference of various complex factors, it is difficult to effectively carry out the correct detection of traffic signs, and the robustness is weak, a traffic sign detection algorithm based on the region of interest extraction and double filter is designed.First, in order to reduce environmental interference, the input image is preprocessed to enhance the main color of each logo.Secondly, in order to improve the extraction ability Of Regions Of Interest, a Region Of Interest (ROI) detector based on Maximally Stable Extremal Regions (MSER) and Wave Equation (WE) was defined, and candidate Regions were selected through the ROI detector.Then, an effective HOG (Histogram of Oriented Gradient) descriptor is introduced as the detection feature of traffic signs, and SVM (Support Vector Machine) is used to classify them into traffic signs or background.Finally, the context-aware filter and the traffic light filter are used to further identify the false traffic signs and improve the detection accuracy.In the GTSDB database, three kinds of traffic signs, which are indicative, prohibited and dangerous, are tested, and the results show that the proposed algorithm has higher detection accuracy and robustness compared with the current traffic sign recognition technology.


Author(s):  
Laure Fournier ◽  
Lena Costaridou ◽  
Luc Bidaut ◽  
Nicolas Michoux ◽  
Frederic E. Lecouvet ◽  
...  

Abstract Existing quantitative imaging biomarkers (QIBs) are associated with known biological tissue characteristics and follow a well-understood path of technical, biological and clinical validation before incorporation into clinical trials. In radiomics, novel data-driven processes extract numerous visually imperceptible statistical features from the imaging data with no a priori assumptions on their correlation with biological processes. The selection of relevant features (radiomic signature) and incorporation into clinical trials therefore requires additional considerations to ensure meaningful imaging endpoints. Also, the number of radiomic features tested means that power calculations would result in sample sizes impossible to achieve within clinical trials. This article examines how the process of standardising and validating data-driven imaging biomarkers differs from those based on biological associations. Radiomic signatures are best developed initially on datasets that represent diversity of acquisition protocols as well as diversity of disease and of normal findings, rather than within clinical trials with standardised and optimised protocols as this would risk the selection of radiomic features being linked to the imaging process rather than the pathology. Normalisation through discretisation and feature harmonisation are essential pre-processing steps. Biological correlation may be performed after the technical and clinical validity of a radiomic signature is established, but is not mandatory. Feature selection may be part of discovery within a radiomics-specific trial or represent exploratory endpoints within an established trial; a previously validated radiomic signature may even be used as a primary/secondary endpoint, particularly if associations are demonstrated with specific biological processes and pathways being targeted within clinical trials. Key Points • Data-driven processes like radiomics risk false discoveries due to high-dimensionality of the dataset compared to sample size, making adequate diversity of the data, cross-validation and external validation essential to mitigate the risks of spurious associations and overfitting. • Use of radiomic signatures within clinical trials requires multistep standardisation of image acquisition, image analysis and data mining processes. • Biological correlation may be established after clinical validation but is not mandatory.


Forecasting ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 377-420
Author(s):  
Julien Chevallier ◽  
Dominique Guégan ◽  
Stéphane Goutte

This paper focuses on forecasting the price of Bitcoin, motivated by its market growth and the recent interest of market participants and academics. We deploy six machine learning algorithms (e.g., Artificial Neural Network, Support Vector Machine, Random Forest, k-Nearest Neighbours, AdaBoost, Ridge regression), without deciding a priori which one is the ‘best’ model. The main contribution is to use these data analytics techniques with great caution in the parameterization, instead of classical parametric modelings (AR), to disentangle the non-stationary behavior of the data. As soon as Bitcoin is also used for diversification in portfolios, we need to investigate its interactions with stocks, bonds, foreign exchange, and commodities. We identify that other cryptocurrencies convey enough information to explain the daily variation of Bitcoin’s spot and futures prices. Forecasting results point to the segmentation of Bitcoin concerning alternative assets. Finally, trading strategies are implemented.


2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110277
Author(s):  
Yankai Hou ◽  
Zhaosheng Zhang ◽  
Peng Liu ◽  
Chunbao Song ◽  
Zhenpo Wang

Accurate estimation of the degree of battery aging is essential to ensure safe operation of electric vehicles. In this paper, using real-world vehicles and their operational data, a battery aging estimation method is proposed based on a dual-polarization equivalent circuit (DPEC) model and multiple data-driven models. The DPEC model and the forgetting factor recursive least-squares method are used to determine the battery system’s ohmic internal resistance, with outliers being filtered using boxplots. Furthermore, eight common data-driven models are used to describe the relationship between battery degradation and the factors influencing this degradation, and these models are analyzed and compared in terms of both estimation accuracy and computational requirements. The results show that the gradient descent tree regression, XGBoost regression, and light GBM regression models are more accurate than the other methods, with root mean square errors of less than 6.9 mΩ. The AdaBoost and random forest regression models are regarded as alternative groups because of their relative instability. The linear regression, support vector machine regression, and k-nearest neighbor regression models are not recommended because of poor accuracy or excessively high computational requirements. This work can serve as a reference for subsequent battery degradation studies based on real-time operational data.


Sign in / Sign up

Export Citation Format

Share Document