scholarly journals Conventional and HD-tDCS May (or May Not) Modulate Overt Attentional Orienting: An Integrated Spatio-Temporal Approach and Methodological Reflections

2021 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Lorenzo Diana ◽  
Giulia Scotti ◽  
Edoardo N. Aiello ◽  
Patrick Pilastro ◽  
Aleksandra K. Eberhard-Moscicka ◽  
...  

Transcranial Direct Current Stimulation (tDCS) has been employed to modulate visuo-spatial attentional asymmetries, however, further investigation is needed to characterize tDCS-associated variability in more ecological settings. In the present research, we tested the effects of offline, anodal conventional tDCS (Experiment 1) and HD-tDCS (Experiment 2) delivered over the posterior parietal cortex (PPC) and Frontal Eye Field (FEF) of the right hemisphere in healthy participants. Attentional asymmetries were measured by means of an eye tracking-based, ecological paradigm, that is, a Free Visual Exploration task of naturalistic pictures. Data were analyzed from a spatiotemporal perspective. In Experiment 1, a pre-post linear mixed model (LMM) indicated a leftward attentional shift after PPC tDCS; this effect was not confirmed when the individual baseline performance was considered. In Experiment 2, FEF HD-tDCS was shown to induce a significant leftward shift of gaze position, which emerged after 6 s of picture exploration and lasted for 200 ms. The present results do not allow us to conclude on a clear efficacy of offline conventional tDCS and HD-tDCS in modulating overt visuospatial attention in an ecological setting. Nonetheless, our findings highlight a complex relationship among stimulated area, focality of stimulation, spatiotemporal aspects of deployment of attention, and the role of individual baseline performance in shaping the effects of tDCS.

2021 ◽  
Author(s):  
Lorenzo Diana ◽  
Patrick Pilastro ◽  
Edoardo N. Aiello ◽  
Aleksandra K. Eberhard-Moscicka ◽  
René M. Müri ◽  
...  

ABSTRACTIn the present work, we applied anodal transcranial direct current stimulation (tDCS) over the posterior parietal cortex (PPC) and frontal eye field (FEF) of the right hemisphere in healthy subjects to modulate attentional orienting and disengagement in a gap-overlap task. Both stimulations led to bilateral improvements in saccadic reaction times (SRTs), with larger effects for gap trials. However, analyses showed that the gap effect was not affected by tDCS. Importantly, we observed significant effects of baseline performance that may mediate side- and task-specific effects of brain stimulation.


2018 ◽  
Vol 147 ◽  
Author(s):  
A. Aswi ◽  
S. M. Cramb ◽  
P. Moraga ◽  
K. Mengersen

AbstractDengue fever (DF) is one of the world's most disabling mosquito-borne diseases, with a variety of approaches available to model its spatial and temporal dynamics. This paper aims to identify and compare the different spatial and spatio-temporal Bayesian modelling methods that have been applied to DF and examine influential covariates that have been reportedly associated with the risk of DF. A systematic search was performed in December 2017, using Web of Science, Scopus, ScienceDirect, PubMed, ProQuest and Medline (via Ebscohost) electronic databases. The search was restricted to refereed journal articles published in English from January 2000 to November 2017. Thirty-one articles met the inclusion criteria. Using a modified quality assessment tool, the median quality score across studies was 14/16. The most popular Bayesian statistical approach to dengue modelling was a generalised linear mixed model with spatial random effects described by a conditional autoregressive prior. A limited number of studies included spatio-temporal random effects. Temperature and precipitation were shown to often influence the risk of dengue. Developing spatio-temporal random-effect models, considering other priors, using a dataset that covers an extended time period, and investigating other covariates would help to better understand and control DF transmission.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Selene Schintu ◽  
Elisa Martín-Arévalo ◽  
Michael Vesia ◽  
Yves Rossetti ◽  
Romeo Salemme ◽  
...  

Rightward prism adaptation ameliorates neglect symptoms while leftward prism adaptation (LPA) induces neglect-like biases in healthy individuals. Similarly, inhibitory repetitive transcranial magnetic stimulation (rTMS) on the right posterior parietal cortex (PPC) induces neglect-like behavior, whereas on the left PPC it ameliorates neglect symptoms and normalizes hyperexcitability of left hemisphere parietal-motor (PPC-M1) connectivity. Based on this analogy we hypothesized that LPA increases PPC-M1 excitability in the left hemisphere and decreases it in the right one. In an attempt to shed some light on the mechanisms underlying LPA’s effects on cognition, we investigated this hypothesis in healthy individuals measuring PPC-M1 excitability with dual-site paired-pulse TMS (ppTMS). We found a left hemisphere increase and a right hemisphere decrease in the amplitude of motor evoked potentials elicited by paired as well as single pulses on M1. While this could indicate that LPA biases interhemispheric connectivity, it contradicts previous evidence that M1-only MEPs are unchanged after LPA. A control experiment showed that input-output curves were not affected by LPAper se. We conclude that LPA combined with ppTMS on PPC-M1 differentially alters the excitability of the left and right M1.


2011 ◽  
Vol 366 (1564) ◽  
pp. 572-585 ◽  
Author(s):  
L. Pisella ◽  
N. Alahyane ◽  
A. Blangero ◽  
F. Thery ◽  
S. Blanc ◽  
...  

We review evidence showing a right-hemispheric dominance for visuo-spatial processing and representation in humans. Accordingly, visual disorganization symptoms (intuitively related to remapping impairments) are observed in both neglect and constructional apraxia. More specifically, we review findings from the intervening saccade paradigm in humans—and present additional original data—which suggest a specific role of the asymmetrical network at the temporo-parietal junction (TPJ) in the right hemisphere in visual remapping: following damage to the right dorsal posterior parietal cortex (PPC) as well as part of the corpus callosum connecting the PPC to the frontal lobes, patient OK in a double-step saccadic task exhibited an impairment when the second saccade had to be directed rightward . This singular and lateralized deficit cannot result solely from the patient's cortical lesion and, therefore, we propose that it is due to his callosal lesion that may specifically interrupt the interhemispheric transfer of information necessary to execute accurate rightward saccades towards a remapped target location. This suggests a specialized right-hemispheric network for visuo-spatial remapping that subsequently transfers target location information to downstream planning regions, which are symmetrically organized.


2007 ◽  
Vol 19 (3) ◽  
pp. 513-524 ◽  
Author(s):  
Elisabeth Rounis ◽  
Kielan Yarrow ◽  
John C. Rothwell

Many studies have shown that visuospatial orienting attention depends on a network of frontal and parietal areas in the right hemisphere. Rushworth et al. [Rushworth, M. F., Krams, M., & Passingham, R. E. The attentional role of the left parietal cortex: The distinct lateralization and localization of motor attention in the human brain. Journal of Cognitive Neuroscience, 13, 698–710, 2001] have recently provided evidence for a left-lateralized network of parietal areas involved in motor attention. Using two variants of a cued reaction time (RT) task, we set out to investigate whether high-frequency repetitive transcranial magnetic stimulation (rTMS; 5 Hz) delivered “off-line” in a virtual lesion paradigm over the right or left dorsolateral prefrontal cortex (DLPFC) or the posterior parietal cortex (PPC) would affect performance in a motor versus a visual attention task. Although rTMS over the DLPFC on either side did not affect RT performance on a spatial orienting task, it did lead to an increase in the RTs of invalidly cued trials in a motor attention task when delivered to the left DLPFC. The opposite effect was found when rTMS was delivered to the PPC: In this case, conditioning the right PPC led to increased RTs in invalidly cued trials located in the left hemispace, in the spatial orienting task. rTMS over the PPC on either side did not affect performance in the motor attention task. This double dissociation was evident in the first 10 min after rTMS conditioning. These results enhance our understanding of the networks associated with attention. They provide evidence of a role for the left DLPFC in the mechanisms of motor preparation, and confirm Mesulam's original proposal for a right PPC dominance in spatial attention [Mesulam, M. M. A cortical network for directed attention and unilateral neglect. Annals of Neurology, 10, 309–325, 1981].


2012 ◽  
Vol 69 (8) ◽  
pp. 681-685
Author(s):  
Natasa Djukic-Macut ◽  
Slobodan Malobabic ◽  
Natalija Stefanovic ◽  
Predrag Mandic ◽  
Tatjana Filipovic ◽  
...  

Background/Aim. Both superior parietal lobule (SPL) of dorsolateral hemispheric surface and precuneus (PEC) of medial surface are the parts of posterior parietal cortex. The aim of this study was to determine the numerical density (NV) of pyramidal neurons in the layer V of SPL and PEC and their potential differences. Methods. From 20 (40 hemispheres) formaline fixed human brains (both sexes; 27- 65 years) tissue blocks from SPL and PEC from the left and right hemisphere were used. According to their size the brains were divided into two groups, the group I with the larger left (15 brains) and the group II with the larger right hemisphere (5 brains). Serial Nissl sections (5 ?m) of the left and right SPL and PEC were used for stereological estimation of NV of the layer V pyramidal neurons. Results. NV of pyramidal neurons in the layer V in the left SPL of brains with larger left hemispheres was significantly higher than in the left SPL of brains with larger right hemisphere. Comparing sides in brains with larger left hemisphere, the left SPL had higher NV than the right one, and then the left PEC, and the right SPL had significantly higher NV than the right PEC. Comparing sides in brains with the larger right hemisphere, the left SPL had significantly higher NV than left PEC, but the right SPL had significantly higher NV than left SPL and the right PEC. Conclusion. Generally, there is an inverse relationship of NV between the medial and lateral areas of the human posterior parietal cortex. The obtained values were different between the brains with larger left and right hemispheres, as well as between the SPL and PEC. In all the comparisons the left SPL had the highest values of NV of pyramidal neurons in the layer V (4771.80 mm-3), except in brains with the larger right hemisphere.


2020 ◽  
Author(s):  
B. R. Baltaretu ◽  
B. T. Dunkley ◽  
W. Dale Stevens ◽  
J. D. Crawford

AbstractPosterior parietal cortex (PPC), specifically right supramarginal gyrus, is involved in transsaccadic memory of object orientation for both perception and action. Here, we investigated whether PPC is involved in transsaccadic memory of other features, namely spatial frequency. We employed a functional magnetic resonance imaging paradigm where participants briefly viewed a grating stimulus with a specific spatial frequency that later reappeared with the same or different frequency, after a saccade or continuous fixation. Post-saccadic frequency modulation activated a region in the right hemisphere spanning medial PPC (ventral precuneus) and posterior cingulate cortex. Importantly, the site of peak precuneus activation showed saccade-specific feature modulation (compared to fixation) and task-specific saccade modulation (compared to a saccade localizer task). Psychophysiological interaction analysis revealed functional connectivity between this precuneus site and the precentral gyrus (M1), lingual gyrus (V1/V2), and medial occipitotemporal sulcus. This differed from the transsaccadic orientation network, perhaps because spatial frequency signaled changes in object identity. Overall, this experiment supports a general role for PPC in transsaccadic vision, but suggests that different networks are employed for specific features.


2020 ◽  
Vol 10 (11) ◽  
pp. 170
Author(s):  
Dmitry O. Sinitsyn ◽  
Ilya S. Bakulin ◽  
Alexandra G. Poydasheva ◽  
Liudmila A. Legostaeva ◽  
Elena I. Kremneva ◽  
...  

Insight is one of the most mysterious problem-solving phenomena involving the sudden emergence of a solution, often preceded by long unproductive attempts to find it. This seemingly unexplainable generation of the answer, together with the role attributed to insight in the advancement of science, technology and culture, stimulate active research interest in discovering its neuronal underpinnings. The present study employs functional Magnetic resonance imaging (fMRI) to probe and compare the brain activations occurring in the course of solving anagrams by insight or analytically, as judged by the subjects. A number of regions were activated in both strategies, including the left premotor cortex, left claustrum, and bilateral clusters in the precuneus and middle temporal gyrus. The activated areas span the majority of the clusters reported in a recent meta-analysis of insight-related fMRI studies. At the same time, the activation patterns were very similar between the insight and analytical solutions, with the only difference in the right sensorimotor region probably explainable by subject motion related to the study design. Additionally, we applied resting-state fMRI to study functional connectivity patterns correlated with the individual frequency of insight anagram solutions. Significant correlations were found for the seed-based connectivity of areas in the left premotor cortex, left claustrum, and left frontal eye field. The results stress the need for optimizing insight paradigms with respect to the accuracy and reliability of the subjective insight/analytical solution classification. Furthermore, the short-lived nature of the insight phenomenon makes it difficult to capture the associated neural events with the current experimental techniques and motivates complementing such studies by the investigation of the structural and functional brain features related to the individual differences in the frequency of insight-based decisions.


2019 ◽  
Author(s):  
Caroline Kelly ◽  
Blake Staat ◽  
Erica Klenz

Current prevalent discourse suggests that open plan offices provide a negative experience for millions of workers. Since a major dissatisfier in the open plan is the increase in distractions and lack of privacy and the associated lack of ability to concentrate, we conceived of a randomized crossover experimental design that would examine how different furniture settings might affect the performance of a task designed to measure sustained attention. Seventy-three participants completed the Sustained Attention Response Task in two sessions, once at an open Bench workstation and once at a semi-shielded Individual Work Environment (IWE), within the open plan. Data was analyzed in a linear mixed model and showed that participants had significantly fewer errors of commission (p=.0004) and an increased response time for Go trials before a failed No-Go trial (p=.0232) at the Individual Work Environment which indicates better sustained attention than at the Bench. An increased response time for go trials was greater at the Bench, though it did not meet the threshold for significance (p=.0893). The theories of resource depletion and social inhibition may help to explain the findings as the Individual Work Environment provides increased privacy and a more relaxed posture, allowing individuals to conserve cognitive resources as the demand to monitor themselves and others in their surroundings is decreased. This research suggests that the open plan can provide increased density, flexibility and proximity while at the same time, better support the need for sustained attention, by offering a range of furniture settings with different affordances.


1997 ◽  
Vol 78 (2) ◽  
pp. 977-991 ◽  
Author(s):  
M.-P. Deiber ◽  
S. P. Wise ◽  
M. Honda ◽  
M. J. Catalan ◽  
J. Grafman ◽  
...  

Deiber, M.-P., S. P. Wise, M. Honda, M. J. Catalan, J. Grafman, and M. Hallett. Frontal and parietal networks for conditional motor learning: a positron emission tomography study. J. Neurophysiol. 78: 977–991, 1997. Studies on nonhuman primates show that the premotor (PM) and prefrontal (PF) areas are necessary for the arbitrary mapping of a set of stimuli onto a set of responses. However, positron emission tomography (PET) measurements of regional cerebral blood flow (rCBF) in human subjects have failed to reveal the predicted rCBF changes during such behavior. We therefore studied rCBF while subjects learned two arbitrary mapping tasks. In the conditional motor task, visual stimuli instructed which of four directions to move a joystick (with the right, dominant hand). In the evaluation task, subjects moved the joystick in a predetermined direction to report whether an arrow pointed in the direction associated with a given stimulus. For both tasks there were three rules: for the nonspatial rule, the pattern within each stimulus determined the correct direction; for the spatial rule, the location of the stimulus did so; and for the fixed-response rule, movement direction was constant regardless of the pattern or its location. For the nonspatial rule, performance of the evaluation task led to a learning-related increase in rCBF in a caudal and ventral part of the premotor cortex (PMvc, area 6), bilaterally, as well as in the putamen and a cingulate motor area (CM, area 24) of the left hemisphere. Decreases in rCBF were observed in several areas: the left ventro-orbital prefrontal cortex (PFv, area 47/12), the left lateral cerebellar hemisphere, and, in the right hemisphere, a dorsal and rostral aspect of PM (PMdr, area 6), dorsal PF (PFd, area 9), and the posterior parietal cortex (area 39/40). During performance of the conditional motor task, there was only a decrease in the parietal area. For the spatial rule, no rCBF change reached significance for the evaluation task, but in the conditional motor task, a ventral and rostral premotor region (PMvr, area 6), the dorsolateral prefrontal cortex (PFdl, area 46), and the posterior parietal cortex (area 39/40) showed decreasing rCBF during learning, all in the right hemisphere. These data confirm the predicted rCBF changes in premotor and prefrontal areas during arbitrary mapping tasks and suggest that a broad frontoparietal network may show decreased synaptic activity as arbitrary rules become more familiar.


Sign in / Sign up

Export Citation Format

Share Document