scholarly journals Improvement Proposal of Bottom-Up Approach for the Energy Characterization of Buildings in the Tropical Climate

Buildings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 159
Author(s):  
Jorge Cárdenas-Rangel ◽  
German Osma-Pinto ◽  
Julián Jaramillo-Ibarra

The energy characterization of buildings can be done by bottom-up methods such as energy simulation models (samples or archetypes). A sample consists of the selection of real buildings and an archetype is a theoretical building that represents them. Nevertheless, both approaches have shortcomings for the creation of energy models. This work proposes to improve the sampling approach from the validation of input data, and calibration of models by individual adjustment processes. The studied category corresponds to multi-family buildings of median incomes from the Metropolitan Area of Bucaramanga (Colombia). This study presents the energy model of five existing buildings and an archetype, calibration results, energy characterization, and comparative analysis between both approaches. The sampling approach indicates that housing units and general services demand an average of 76.9% and 23.1% of consumed energy, respectively. The average energy consumption by housing units is 22.38 kWh/m2·year caused by appliances (85.3%), lighting (11.2%), and air conditioning (3.5%). The archetype presents similar results for the energy consumption of housing units (kWh/m2·year), but notable differences concerning a specific behavior of inner spaces, being the sampling approach more accurate to characterize to a building category.

Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2614 ◽  
Author(s):  
Serena Santi ◽  
Le Tian ◽  
Evgeny Khorov ◽  
Jeroen Famaey

Minimizing the energy consumption is one of the main challenges in internet of things (IoT) networks. Recently, the IEEE 802.11ah standard has been released as a new low-power Wi-Fi solution. It has several features, such as restricted access window (RAW) and target wake time (TWT), that promise to improve energy consumption. Specifically, in this article we study how to reduce the energy consumption thanks to RAW and TWT. In order to do this, we first present an analytical model that calculates the average energy consumption during a RAW slot. We compare these results to the IEEE 802.11ah simulator that we have extended for this scope with an energy life-cycle model for RAW and TWT. Then we study the energy consumption under different conditions using RAW. Finally, we evaluate the energy consumption using TWT. In the results, we show that the presented model has a maximum deviation from the simulations of 10% in case of capture effect (CE) and 7% without it. RAW always performs better than carrier-sense multiple access with collision avoidance (CSMA/CA) when the traffic is higher and the usage of more slots has showed to have better energy efficiency, of up to the 76%, although also significantly increasing the latency. We will show how TWT outperforms pure RAW, by over 100%, when the transmission time is over 5 min.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 442
Author(s):  
Xiaoyue Zhu ◽  
Bo Gao ◽  
Xudong Yang ◽  
Zhong Yu ◽  
Ji Ni

In China, a surging urbanization highlights the significance of building energy conservation. However, most building energy-saving schemes are designed solely in compliance with prescriptive codes and lack consideration of the local situations, resulting in an unsatisfactory effect and a waste of funds. Moreover, the actual effect of the design has yet to be thoroughly verified through field tests. In this study, a method of modifying conventional building energy-saving design based on research into the local climate and residents’ living habits was proposed, and residential buildings in Panzhihua, China were selected for trial. Further, the modification scheme was implemented in an actual project with its effect verified by field tests. Research grasps the precise climate features of Panzhihua, which was previously not provided, and concludes that Panzhihua is a hot summer and warm winter zone. Accordingly, the original internal insulation was canceled, and the shading performance of the windows was strengthened instead. Test results suggest that the consequent change of SET* does not exceed 0.5 °C, whereas variations in the energy consumption depend on the room orientation. For rooms receiving less solar radiation, the average energy consumption increased by approximately 20%, whereas for rooms with a severe western exposure, the average energy consumption decreased by approximately 11%. On the other hand, the cost savings of removing the insulation layer are estimated at 177 million RMB (1 USD ≈ 6.5 RMB) per year. In conclusion, the research-based modification method proposed in this study can be an effective tool for improving building energy efficiency adapted to local conditions.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7823
Author(s):  
Hyunchong Cho ◽  
Seungmin Oh ◽  
Yongje Shin ◽  
Euisin Lee

In WSNs, multipath is well-known as a method to improve the reliability of packet delivery by making multiple routes from a source node to a destination node. To improve reliability and load-balancing, it is important to ensure that disjoint characteristics of multipath do not use same nodes during path generation. However, when multipath studies encounter a hole area from which is hard to transmit data packets, they have a problem with breaking the disjoint features of multipath. Although existing studies propose various strategies to bypass hole areas, they have side effects that significantly accelerate energy consumption and packet transmission delay. Therefore, to retain the disjoint feature of multipath, we propose a new scheme that can reduce delay and energy consumption for a node near a hole area using two approaches—global joint avoidance and local avoidance. This scheme uses global joint avoidance to generate a new path centered on a hole area and effectively bypasses the hole area. This scheme also uses local joint avoidance that does not select the same nodes during new path generation using a marking process. In simulations, the proposed scheme has an average 30% improvement in terms of average energy consumption and delay time compared to other studies.


2021 ◽  
Vol 905 (1) ◽  
pp. 012077
Author(s):  
A D P M Larasati ◽  
Darsono ◽  
S Marwanti

Abstract Ngawi is the sixth paddy producer in Indonesia and certainly has an influence on the food security of paddy farm households. This study aimed to analyze the proportion of food expenditure (PFE), energy and protein consumption, the relationship between food expenditure and energy consumption, and the condition of food security. The basic method used descriptive analytic. The number of respondents based on the slovin formula was 87 households. The sample selection used stratified random sampling. The data analysis method used correlation with SPSS 22 and cross indicator between PFE and energy consumption level. The results showed that the average of PFE was 58.81%. The average energy consumption was 4,272.2 kcal/household/day with an energy consumption level of 81.93% while the average protein consumption was 122.1 grams/household/day lower than the average household RDA consumption. Food expenditure had a significant relationship to energy consumption with a correlation coefficient of 0.925 including a very strong and unidirectional relationship. The contribution of household food security conditions were 28.7% secure; 32.2% vulnerable; 10.3% less secure; 28.8% insecure.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 467 ◽  
Author(s):  
Canek Portillo ◽  
Jorge Martinez-Bauset ◽  
Vicent Pla ◽  
Vicente Casares-Giner

Wireless Sensor Networks (WSN) have experienced an important revitalization, particularly with the arrival of Internet of Things applications. In a general sense, a WSN can be composed of different classes of nodes, having different characteristics or requirements (heterogeneity). Duty-cycling is a popular technique used in WSN, that allows nodes to sleep and wake up periodically in order to save energy. We believe that the modeling and performance evaluation of heterogeneous WSN with priorities operating in duty-cycling, being of capital importance for their correct design and successful deployment, have not been sufficiently explored. The present work presents a performance evaluation study of a WSN with these features. For a scenario with two classes of nodes composing the network, each with a different channel access priority, an approximate analytical model is developed with a pair of two-dimensional discrete-time Markov chains. Note that the same modeling approach can be used to analyze networks with a larger number of classes. Performance parameters such as average packet delay, throughput and average energy consumption are obtained. Analytical results are validated by simulation, showing accurate results. Furthermore, a new procedure to determine the energy consumption of nodes is proposed that significantly improves the accuracy of previous proposals. We provide quantitative evidence showing that the energy consumption accuracy improvement can be up to two orders of magnitude.


2019 ◽  
Vol 11 (2) ◽  
pp. 154-164 ◽  
Author(s):  
Siamak Hoseinzadeh

Objective: This study investigated the optimization of thermal energy consumption using electrochromic components with a new nanocomposite layer (WO3+Ag) in a larger size (window) for a room with an educational application for five cities with different climatic conditions in Iran (Yazd, Tehran, Bandar Abbas, Tabriz, and Sari). Materials & Methods: For this simulation platform, the software was implemented in Energy Plus. This feasibility study was modeled by DesignBuilder software which reported reduced thermal energy consumption across all climates in Iran (hot and dry, warm and semi-humid, warm and wet, moderate and dry, and mild and humid.). Four strategies were considered for better comparison. The first strategy used for common double-glazed windows, while the second to fourth strategies involved the use of the electrochromic window in three different modes; bleached mode (Off), colored mode (On), and switchable mode (controlled below comfort conditions). Results: The third and fourth strategies indicated a reduction in thermal energy consumption in different climates from 25 to 45% relative to typical windows. The best result of cooling energy consumption was observed in Tehran. Conclusion: For this climate, the average energy consumption dropped to 34% for the warm months of the year and even 42% for the warmest month of the year (August).


2021 ◽  
Author(s):  
Negin Babaei ◽  
Alireza Hedayati

Abstract Internet of things is one of the most important technologies in the last century which covers various domains such as wireless sensor networks. Wireless sensor networks consist of a large number of sensor nodes that are scattered in an environment and collect information from the surrounding environment and send it to a central station. One of the most important problems in these networks is saving energy consumption of nodes and consequently increasing lifetime of networks. Work has been done in various fields to achieve this goal, one of which is clustering and the use of sleep timing mechanisms in wireless sensor networks. Therefore, in this article, we have examined the existing protocols in this field, especially LEACH-based clustering protocols. The proposed method tries to optimize the energy consumption of nodes by using genetic-based clustering as well as a sleep scheduling mechanism based on the colonial competition algorithm. The results of this simulation show that our proposed method has improved network life (by 18%) and average energy consumption (by 11%) and reduced latency in these networks (by 17%).


2021 ◽  
Vol 2061 (1) ◽  
pp. 012010
Author(s):  
R N Latyshev ◽  
E Y Abramov ◽  
L I Tolstobrova

Abstract In this article, it is proposed to use energy storage devices as a part of charging stations to reduce the powerful load for the power system during the hours of the greatest energy consumption. This is due to the analysis results for the growth trends of the electric vehicles. By the example of the city Novosibirsk, according to the forecasts of analytical companies about the trend of increasing the number of electric cars (ECs) in Russia, the average energy consumption per day for charging ECs has been calculated. Based on the calculation results, the influence of charging stations on the daily schedule of the active load for the industrial power grid is shown and the capacity lack problem is identified. The experimental measurements results at traction substation No. 29 in Novosibirsk are presented.


Sign in / Sign up

Export Citation Format

Share Document