scholarly journals T Cells Expressing a TCR-Like Antibody Selected Against the Heteroclitic Variant of a Shared MAGE-A Epitope Do Not Recognise the Cognate Epitope

Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1255
Author(s):  
Mesha Saeed ◽  
Erik Schooten ◽  
Mandy van Brakel ◽  
David K. Cole ◽  
Timo L. M. ten Hagen ◽  
...  

Antibodies-recognising peptides bound to the major histocompatibility complex (pMHC) represent potentially valuable and promising targets for chimeric antigen receptor (CAR) T cells to treat patients with cancer. Here, a human phage-Fab library has been selected using HLA-A2 complexed with a heteroclitic peptide variant from an epitope shared among multiple melanoma-associated antigens (MAGEs). DNA restriction analyses and phage ELISAs confirmed selection of unique antibody clones that specifically bind to HLA-A2 complexes or HLA-A2-positive target cells loaded with native or heteroclitic peptide. Antibodies selected against heteroclitic peptide, in contrast to native peptide, demonstrated significantly lower to even negligible binding towards native peptide or tumour cells that naturally expressed peptides. The binding to native peptide was not rescued by phage panning with antigen-positive tumour cells. Importantly, when antibodies directed against heteroclitic peptides were engineered into CARs and expressed by T cells, binding to native peptides and tumour cells was minimal to absent. In short, TCR-like antibodies, when isolated from a human Fab phage library using heteroclitic peptide, fail to recognise its native peptide. We therefore argue that peptide modifications to improve antibody selections should be performed with caution as resulting antibodies, either used directly or as CARs, may lose activity towards endogenously presented tumour epitopes.

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 867
Author(s):  
Ling Wu ◽  
Joanna Brzostek ◽  
Shvetha Sankaran ◽  
Qianru Wei ◽  
Jiawei Yap ◽  
...  

Chimeric antigen receptor T cells (CAR-T) utilize T cell receptor (TCR) signaling cascades and the recognition functions of antibodies. This allows T cells, normally restricted by the major histocompatibility complex (MHC), to be redirected to target cells by their surface antigens, such as tumor associated antigens (TAAs). CAR-T technology has achieved significant successes in treatment of certain cancers, primarily liquid cancers. Nonetheless, many challenges hinder development of this therapy, such as cytokine release syndrome (CRS) and the efficacy of CAR-T treatments for solid tumors. These challenges show our inadequate understanding of this technology, particularly regarding CAR signaling, which has been less studied. To dissect CAR signaling, we designed a CAR that targets an epitope from latent membrane protein 2 A (LMP2 A) of the Epstein–Barr virus (EBV) presented on HLA*A02:01. Because of this, CAR and TCR signaling can be compared directly, allowing us to study the involvement of other signaling molecules, such as coreceptors. This comparison revealed that CAR was sufficient to bind monomeric antigens due to its high affinity but required oligomeric antigens for its activation. CAR sustained the transduced signal significantly longer, but at a lower magnitude, than did TCR. CD8 coreceptor was recruited to the CAR synapse but played a negligible role in signaling, unlike for TCR signaling. The distinct CAR signaling processes could provide explanations for clinical behavior of CAR-T therapy and suggest ways to improve the technology.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3921-3921 ◽  
Author(s):  
Cesar Sommer ◽  
Hsin-Yuan Cheng ◽  
Yik Andy Yeung ◽  
Duy Nguyen ◽  
Janette Sutton ◽  
...  

Autologous chimeric antigen receptor (CAR) T cells have achieved unprecedented clinical responses in patients with B-cell leukemias, lymphomas and multiple myeloma, raising interest in using CAR T cell therapies in AML. These therapies are produced using a patient's own T cells, an approach that has inherent challenges, including requiring significant time for production, complex supply chain logistics, separate GMP manufacturing for each patient, and variability in performance of patient-derived cells. Given the rapid pace of disease progression combined with limitations associated with the autologous approach and treatment-induced lymphopenia, many patients with AML may not receive treatment. Allogeneic CAR T (AlloCAR T) cell therapies, which utilize cells from healthy donors, may provide greater convenience with readily available off-the-shelf CAR T cells on-demand, reliable product consistency, and accessibility at greater scale for more patients. To create an allogeneic product, the TRAC and CD52 genes are inactivated in CAR T cells using Transcription Activator-Like Effector Nuclease (TALEN®) technology. These genetic modifications are intended to minimize the risk of graft-versus-host disease and to confer resistance to ALLO-647, an anti-CD52 antibody that can be used as part of the conditioning regimen to deplete host alloreactive immune cells potentially leading to increased persistence and efficacy of the infused allogeneic cells. We have previously described the functional screening of a library of anti-FLT3 single-chain variable fragments (scFvs) and the identification of a lead FLT3 CAR with optimal activity against AML cells and featuring an off-switch activated by rituximab. Here we characterize ALLO-819, an allogeneic FLT3 CAR T cell product, for its antitumor efficacy and expansion in orthotopic models of human AML, cytotoxicity in the presence of soluble FLT3 (sFLT3), performance compared with previously described anti-FLT3 CARs and potential for off-target binding of the scFv to normal human tissues. To produce ALLO-819, T cells derived from healthy donors were activated and transduced with a lentiviral construct for expression of the lead anti-FLT3 CAR followed by efficient knockout of TRAC and CD52. ALLO-819 manufactured from multiple donors was insensitive to ALLO-647 (100 µg/mL) in in vitro assays, suggesting that it would avoid elimination by the lymphodepletion regimen. In orthotopic models of AML (MV4-11 and EOL-1), ALLO-819 exhibited dose-dependent expansion and cytotoxic activity, with peak CAR T cell levels corresponding to maximal antitumor efficacy. Intriguingly, ALLO-819 showed earlier and more robust peak expansion in mice engrafted with MV4-11 target cells, which express lower levels of the antigen relative to EOL-1 cells (n=2 donors). To further assess the potency of ALLO-819, multiple anti-FLT3 scFvs that had been described in previous reports were cloned into lentiviral constructs that were used to generate CAR T cells following the standard protocol. In these comparative studies, the ALLO-819 CAR displayed high transduction efficiency and superior performance across different donors. Furthermore, the effector function of ALLO-819 was equivalent to that observed in FLT3 CAR T cells with normal expression of TCR and CD52, indicating no effects of TALEN® treatment on CAR T cell activity. Plasma levels of sFLT3 are frequently increased in patients with AML and correlate with tumor burden, raising the possibility that sFLT3 may act as a decoy for FLT3 CAR T cells. To rule out an inhibitory effect of sFLT3 on ALLO-819, effector and target cells were cultured overnight in the presence of increasing concentrations of recombinant sFLT3. We found that ALLO-819 retained its killing properties even in the presence of supraphysiological concentrations of sFLT3 (1 µg/mL). To investigate the potential for off-target binding of the ALLO-819 CAR to human tissues, tissue cross-reactivity studies were conducted using a recombinant protein consisting of the extracellular domain of the CAR fused to human IgG Fc. Consistent with the limited expression pattern of FLT3 and indicative of the high specificity of the lead scFv, no appreciable membrane staining was detected in any of the 36 normal tissues tested (n=3 donors). Taken together, our results support clinical development of ALLO-819 as a novel and effective CAR T cell therapy for the treatment of AML. Disclosures Sommer: Allogene Therapeutics, Inc.: Employment, Equity Ownership. Cheng:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Yeung:Pfizer Inc.: Employment, Equity Ownership. Nguyen:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Sutton:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Melton:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Valton:Cellectis, Inc.: Employment, Equity Ownership. Poulsen:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Djuretic:Pfizer, Inc.: Employment, Equity Ownership. Van Blarcom:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Chaparro-Riggers:Pfizer, Inc.: Employment, Equity Ownership. Sasu:Allogene Therapeutics, Inc.: Employment, Equity Ownership.


1995 ◽  
Vol 181 (1) ◽  
pp. 393-398 ◽  
Author(s):  
J L Chu ◽  
P Ramos ◽  
A Rosendorff ◽  
J Nikolić-Zugić ◽  
E Lacy ◽  
...  

Fas-deficient lpr and gld mice develop lymphadenopathy due to the accumulation of T cells with an unusual double negative (DN) (CD4-CD8-) phenotype. Previous studies have shown that these abnormal cells are capable of inducing redirected lysis of certain Fc receptor-positive target cells. Since the Fas ligand (FasL) has recently been shown to be partly responsible for T cell-mediated cytotoxicity, lymph node cells from lpr and gld mice were examined for the expression of FasL mRNA. Northern blot analysis revealed that lymph node cells obtained from lpr and gld mice had a striking increase in the level of expression of FasL mRNA predominantly due to expression in the DN T cells. Furthermore, lpr, but not gld lymph node cells killed the B cell line, A20, in a Fas-dependent manner. These findings indicate that Fas mutations result in a massive up-regulation of FasL which, most likely, results from repetitive exposure to (self) antigen. This phenomenon could explain the lpr-induced wasting syndrome observed when lpr bone marrow-derived cells are adoptively transferred to wild-type recipients.


2020 ◽  
Vol 29 ◽  
pp. 096368972092082 ◽  
Author(s):  
Zhixiong Wang ◽  
Guomin Zhou ◽  
Na Risu ◽  
Jiayu Fu ◽  
Yan Zou ◽  
...  

Chimeric antigen receptor (CAR) T-cell immunotherapy still faces many challenges in the treatment of solid tumors, one of which is T-cell dysfunction or exhaustion. Immunomodulator lenalidomide may improve CAR T-cell function. In this study, the effects of lenalidomide on CAR T-cell functions (cytotoxicity, cytokine secretion, and cell proliferation) were investigated. Two different CAR T cells (CD133-specific CAR and HER2-specific CAR) were prepared, and the corresponding target cells including human glioma cell line U251 CD133-OE that overexpress CD133 and human breast cancer cell line MDA-MB-453 were used for functional assay. We found that lenalidomide promoted the killing of U251 CD133-OE by CD133-CAR T cells, the cytokine secretion, and the proliferation of CD133-CAR T cells. Lenalidomide also enhanced the cytotoxicity against MDA-MB-453 and the cytokine secretion of HER2-CAR T cells but did not affect their proliferation significantly. Furthermore, lenalidomide may regulate the function of CAR T cells by inducing the degradation of transcription factors Ikaros and Aiolos.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 12-12 ◽  
Author(s):  
Nikhil Hebbar ◽  
Rebecca Epperly ◽  
Abishek Vaidya ◽  
Sujuan Huang ◽  
Cheng Cheng ◽  
...  

Finding the ideal immunotherapy target for AML has proven challenging and is limited by overlapping expression of antigens on hematopoietic progenitor cells (HPCs) and AML blasts. Intracellular Glucose-regulated-protein 78 (GRP78) is a key UPR regulator, which normally resides in the endoplasmic reticulum (ER). GRP78 is overexpressed and translocated to the cell surface in a broad range of solid tumors and hematological malignancies in response to elevated ER stress, making it an attractive target for immune-based therapies with T cells expressing chimeric antigen receptors (CARs). The goal of this project was to determine the expression of GRP78 on pediatric AML samples, generate GRP78-CAR T cells, and evaluate their effector function against AML blasts in vitro and in vivo. To demonstrate overexpression of GRP78 in AML, we performed gene expression analysis by RNAseq on a cohort of cord blood CD34+ cell samples (N=5) and 74 primary AML samples. Primary AML samples included RUNX1-RUNX1T1 (N=7), CBFB-MYH11(N=17), KMT2A rearrangement (N=28) and NUP98 (N=22). Analysis showed increased GRP78 expression in AML samples, especially in KMT2A- and NUP98-rearranged AML. To demonstrate surface expression of GRP78, we performed flow cytometry of AML (Kg1a, MOLLM13, THP-1, MV4-11) cell lines as well as 11 primary AML samples and 5 PDX samples; non transduced (NT) T cells served as control. All AML samples, including cell lines, primary AML blasts, and PDX samples, showed increased expression of GRP78 on their cell surface in comparison to NT T cells We then designed a retroviral vector encoding a GRP78-CAR using a GRP78-specific peptide as an antigen recognition domain, and generated GRP78-CAR T cells by retroviral transduction of primary human T cells. Median transduction efficiency was 82% (± 5-8%, N=6), and immunophenotypic analysis showed a predominance of naïve and terminal effector memory subsets on day 7 after transduction (N=5). To determine the antigen specificity of GRP78-CAR T cells, we performed coculture assays in vitro with cell surface GRP78+ (AML cell lines: MOLM13, MV-4-11, and THP-1 and 3 AML PDX samples) or cell surface GRP78- (NT T cells) targets. T cells expressing CARs specific for HER2-, CD19-, or a non-functional GRP78 (DGRP78)-CAR served as negative controls. GRP78-CAR T cells secreted significant amounts of IFNg and IL-2 only in the presence of GRP78+ target cells (N=3, p<0.005); while control CAR T cells did not. GRP78-CAR T cells only killed GRP78+ target cells in standard cytotoxicity assays confirming specificity. To test the effects of GRP78-CAR T cells on normal bone marrow derived HPCs, we performed standard colony forming unit (CFU) assays post exposure to GRP78-CAR or NT T cells (effector to target (E:T) ratio 1:1 and 5:1) and determined the number of BFU-E, CFU-E, CFU-GM, and CFU-GEMM. No significant differences between GRP78-CAR and NT T cells were observed except for CFU-Es at an E:T ratio of 5:1 that was not confirmed for BFU-Es. Finally, we evaluated the antitumor activity of GRP78-CAR T cells in an in vivo xenograft AML model (MOLM13). Tumor growth was monitored by serial bioluminescence imaging. A single intravenous dose of GRP78-CAR T cells induced tumor regression, which resulted in a significant (p<0.001) survival advantage in comparison to mice that had received control CAR T cells. In conclusion, GRP78 is expressed on the cell surface of AML. GRP78-CAR T cells have potent anti-AML activity in vitro and in vivo and do not target normal HPCs. Thus, our cell therapy approach warrants further active exploration and has the potential to improve outcomes for patients with AML. Disclosures Hebbar: St. Jude: Patents & Royalties. Epperly:St. Jude: Patents & Royalties. Vaidya:St. Jude: Patents & Royalties. Gottschalk:TESSA Therapeutics: Other: research collaboration; Inmatics and Tidal: Membership on an entity's Board of Directors or advisory committees; Merck and ViraCyte: Consultancy; Patents and patent applications in the fields of T-cell & Gene therapy for cancer: Patents & Royalties. Velasquez:St. Jude: Patents & Royalties; Rally! Foundation: Membership on an entity's Board of Directors or advisory committees.


2015 ◽  
Vol 3 (5) ◽  
pp. 483-494 ◽  
Author(s):  
Alexander J. Davenport ◽  
Misty R. Jenkins ◽  
Ryan S. Cross ◽  
Carmen S. Yong ◽  
H. Miles Prince ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1422
Author(s):  
Vita Golubovskaya ◽  
Hua Zhou ◽  
Feng Li ◽  
Robert Berahovich ◽  
Jinying Sun ◽  
...  

Multiple myeloma (MM) is a hematological cancer caused by abnormal proliferation of plasma cells in the bone marrow, and novel types of treatment are needed for this deadly disease. In this study, we aimed to develop novel CS1 CAR-T cells and bispecific CS1-BCMA CAR-T cells to specifically target multiple myeloma. We generated a new CS1 (CD319, SLAM-7) antibody, clone (7A8D5), which specifically recognized the CS1 antigen, and we applied it for the generation of CS1-CAR. CS1-CAR-T cells caused specific killing of CHO-CS1 target cells with secretion of IFN-gamma and targeted multiple myeloma cells. In addition, bispecific CS1-BCMA-41BB-CD3 CAR-T cells effectively killed CHO-CS1 and CHO-BCMA target cells, killed CS1/BCMA-positive multiple myeloma cells, and secreted IFN-gamma. Moreover, CS1-CAR-T cells and bispecific CS1-BCMA CAR-T cells effectively blocked MM1S multiple myeloma tumor growth in vivo. These data for the first time demonstrate that novel CS1 and bispecific CS1-BCMA-CAR-T cells are effective in targeting MM cells and provide a basis for future clinical trials.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4646-4646
Author(s):  
Emmanouil Simantirakis ◽  
Vassilis Atsaves ◽  
Ioannis Tsironis ◽  
Margarita Gkyzi ◽  
Kostas Konstantopoulos ◽  
...  

Introduction A novel approach that can cover the therapeutic gap in NHL treatment are the autologous T cells, expressing Chimeric Antigen Receptors (CAR-T cells) against tumor markers. Such clinical-grade products based on Lenti (LV) or Retro- vectors have hit the market. An alternative vector system for CAR gene transfer in T-cells are Foamy Viruses (FV). To evaluate the potential of FV vectors in CAR-T cell development, we synthesized an antiCD19 scFv cDNA and cloned it in both an FV and an LV backbone; both vectors were tested in paired experiments Material and Methods The anti-CD19 CAR was under the control of the EF1a promoter; EGFP expression was under the control of an IRES2 element. The anti-CD19 CAR sequence was deduced from published data. FV vectors were made with a 4-plasmid vector system in 293T cells. 2nd generation LV vectors were purchased from Addgene. Cord blood (CB), healthy donor peripheral blood (PB) and CLL patients' PB was used as a source for CD3+ cells using immunomagnetic enrichment. Informed consent has been obtained in all cases of human sample use. T cells were activated by antiCD3/CD28 beads and transduced with antiCD19 LV or FV vectors. Transduction efficiency was assayed by flow cytometry (FCM) using a PE-conjugated anti-mouse Fab antibody. FV and LV CAR-T cells were expanded with Rapid Expansion Protocol (REP) and their cytotoxicity assays was evaluated against the CD19+ cell lines Raji and Daudi. The CLL patient derived CAR-Ts were evaluated against autologous B cells. Cytotoxicity was evaluated with an FCM protocol using CFSE-stained target cells vs unstained effector CARTs in different ratios. At the end of the incubation cells were stained with 7AAD to discriminate against live/dead cells. CAR-T cell activation was also assayed by INF-γ ELISA, following cocultures with target cells at a ratio of 1:1 for 24h. Results Vector titers: LV vector titers were between 3-5x10^5 TU/ml for both LV vectors (with or without EGFP cassette). FV vector titers were between 2-4x10^5 TU/ml regardless of the presence of the EGFP cassette. Tx efficiency: FV can mediate efficient gene transfer on T cells in the presence of heparin at an effective dose of 20-40 U/ml using a spinoculation technique. Transduction efficiency ranged from 40-65% at MOI=3-5, and was comparable to the transduction efficiency of LV vectors at a much higher MOI (10 to 30). Cytotoxicity data on lines: Following REP, the cell population consisted mostly (close to 96% purity) of CAR-T cells regardless of the vector used or of the T cell source. Effector cells were cocultured with the CD19+ cell lines, Daudi and Raji at varying ratios. With cord blood derived FV-CAR-T cells, at 4h post coculture we observed a 39.4% cell lysis at a ratio of 10:1 effector to target (n=1). Similar results were obtained for LV vectors. Peripheral blood derived CAR-T cells at THE same ratio (10:1), demonstrated 83.9% and 93.1% cell lysis for FV-CART and LV-CART cells respectively (n=2). Cytotoxicity data on CLL cells: T-cells from peripheral blood of CLL patients were used to generate LV- and FV-CAR-T cells. At the ratio of 10:1, we observed 73.1% and 69,8% cytotoxicity for FV-CAR-Ts and 70.1% and 70.7% with LV-CAR-Ts, in 2 independent paired experiments. IFN as activation marker: In two paired activation experiments, CB-derived FV-CAR-T cells secrete 560 and 437pg/ml of IFN-γ; similarly, LV-CAR-Ts secrete 534 and 554pg/ml IFN-γ. Untransduced control cells, produced 68pg/ml and 12pg/ml for FV-CAR-T and LV-CAR-T experimental arm respectively. Conclusion In the current work, we developed and tested FV vectors for anti- CD19 CAR-T cell production. We proved that FV viral vectors are capable of mediating efficient gene transfer to human T cells. We developed a method to efficiently transfer FV vectors into T-cells, using a clinically relevant protocol with heparin. The FV-derived CAR T cells demonstrate the same cytotoxic properties in vitro as their LV-derived counterpart and the same activation levels in the presence of CD19 expressing target cells as measured by IFN-γ secretion. FV CARTs derived from PB of CLL patients were capable of mediating comparable cytotoxicity levels as their LV-derived counterparts. Overall, we provide a proof of concept that FVs could be a safe and efficient alternative to LV derived vectors for CAR-T cells. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Emily J. Pomeroy ◽  
Walker S. Lahr ◽  
Jae Woong Chang ◽  
Joshua B. Krueger ◽  
Bryce J. Wick ◽  
...  

Cancer immunotherapy using T cells and NK cells modified with viral vectors to express a chimeric antigen receptor (CAR) has shown remarkable efficacy in treating hematological malignancies in clinical trials. However, viral vectors are limited in their cargo size capacity, and large-scale manufacturing for clinical use remains complex and cost prohibitive. As an alternative, CAR delivery via DNA transposon engineering is a superior and cost-effective production method. Engineering via transposition is accomplished using a two-component system: a plasmid containing a gene expression cassette flanked by transposon inverted terminal repeats (ITRs) paired with a transposase enzyme that binds to the ITRs, excises the transposon from the plasmid, and stably integrates the transposon into the genome. Here, we used the newly developed hyperactive Tc Buster (Bio-Techne) transposon system to deliver a transposon containing a multicistronic expression cassette (CD19-CAR, mutant DHFR, and EGFP) to primary human peripheral blood (PB) NK cells and T cells. We optimized methods to avoid DNA toxicity and maximize efficiency. Our cargo contained a mutant dihydrofolate reductase (DHFR) which allowed us to enrich for stable transposon integration using methotrexate (MTX) selection. We then tested CAR-NK and CAR-T cells in functional assays against CD19-expressing Raji cells. CAR-expressing NK and T cells produced significantly more cytokines than CAR-negative controls and efficiently killed target cells. We recognize that cryopreservation manufactured CAR-expressing cells will be necessary for clinical translation. We observed reduced cytotoxicity of CAR-NK cells immediately after thaw, but increasing the NK dose overcame this loss of function. Our work provides a platform for robust delivery of multicistronic, large cargo via transposition to primary human NK and T cells. We demonstrate that CAR-expressing cells can be enriched using MTX selection, while maintaining high viability and function. This non-viral approach represents a versatile, safe, and cost-effective option for the manufacture of CAR-NK and CAR-T cells compared to viral delivery.


Sign in / Sign up

Export Citation Format

Share Document