scholarly journals Non-Viral Engineering of CAR-NK and CAR-T cells using the Tc Buster Transposon System™

2021 ◽  
Author(s):  
Emily J. Pomeroy ◽  
Walker S. Lahr ◽  
Jae Woong Chang ◽  
Joshua B. Krueger ◽  
Bryce J. Wick ◽  
...  

Cancer immunotherapy using T cells and NK cells modified with viral vectors to express a chimeric antigen receptor (CAR) has shown remarkable efficacy in treating hematological malignancies in clinical trials. However, viral vectors are limited in their cargo size capacity, and large-scale manufacturing for clinical use remains complex and cost prohibitive. As an alternative, CAR delivery via DNA transposon engineering is a superior and cost-effective production method. Engineering via transposition is accomplished using a two-component system: a plasmid containing a gene expression cassette flanked by transposon inverted terminal repeats (ITRs) paired with a transposase enzyme that binds to the ITRs, excises the transposon from the plasmid, and stably integrates the transposon into the genome. Here, we used the newly developed hyperactive Tc Buster (Bio-Techne) transposon system to deliver a transposon containing a multicistronic expression cassette (CD19-CAR, mutant DHFR, and EGFP) to primary human peripheral blood (PB) NK cells and T cells. We optimized methods to avoid DNA toxicity and maximize efficiency. Our cargo contained a mutant dihydrofolate reductase (DHFR) which allowed us to enrich for stable transposon integration using methotrexate (MTX) selection. We then tested CAR-NK and CAR-T cells in functional assays against CD19-expressing Raji cells. CAR-expressing NK and T cells produced significantly more cytokines than CAR-negative controls and efficiently killed target cells. We recognize that cryopreservation manufactured CAR-expressing cells will be necessary for clinical translation. We observed reduced cytotoxicity of CAR-NK cells immediately after thaw, but increasing the NK dose overcame this loss of function. Our work provides a platform for robust delivery of multicistronic, large cargo via transposition to primary human NK and T cells. We demonstrate that CAR-expressing cells can be enriched using MTX selection, while maintaining high viability and function. This non-viral approach represents a versatile, safe, and cost-effective option for the manufacture of CAR-NK and CAR-T cells compared to viral delivery.

Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1926
Author(s):  
Lauren C. Cutmore ◽  
John F. Marshall

CAR T cells have revolutionised the treatment of haematological malignancies. Despite this, several obstacles still prohibit their widespread use and efficacy. One of these barriers is the use of autologous T cells as the carrier of the CAR. The individual production of CAR T cells results in large variation in the product, greater wait times for treatment and higher costs. To overcome this several novel approaches have emerged that utilise allogeneic cells, so called “off the shelf” CAR T cells. In this Review, we describe the different approaches that have been used to produce allogeneic CAR T to date, as well as their current pre-clinical and clinical progress.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3921-3921 ◽  
Author(s):  
Cesar Sommer ◽  
Hsin-Yuan Cheng ◽  
Yik Andy Yeung ◽  
Duy Nguyen ◽  
Janette Sutton ◽  
...  

Autologous chimeric antigen receptor (CAR) T cells have achieved unprecedented clinical responses in patients with B-cell leukemias, lymphomas and multiple myeloma, raising interest in using CAR T cell therapies in AML. These therapies are produced using a patient's own T cells, an approach that has inherent challenges, including requiring significant time for production, complex supply chain logistics, separate GMP manufacturing for each patient, and variability in performance of patient-derived cells. Given the rapid pace of disease progression combined with limitations associated with the autologous approach and treatment-induced lymphopenia, many patients with AML may not receive treatment. Allogeneic CAR T (AlloCAR T) cell therapies, which utilize cells from healthy donors, may provide greater convenience with readily available off-the-shelf CAR T cells on-demand, reliable product consistency, and accessibility at greater scale for more patients. To create an allogeneic product, the TRAC and CD52 genes are inactivated in CAR T cells using Transcription Activator-Like Effector Nuclease (TALEN®) technology. These genetic modifications are intended to minimize the risk of graft-versus-host disease and to confer resistance to ALLO-647, an anti-CD52 antibody that can be used as part of the conditioning regimen to deplete host alloreactive immune cells potentially leading to increased persistence and efficacy of the infused allogeneic cells. We have previously described the functional screening of a library of anti-FLT3 single-chain variable fragments (scFvs) and the identification of a lead FLT3 CAR with optimal activity against AML cells and featuring an off-switch activated by rituximab. Here we characterize ALLO-819, an allogeneic FLT3 CAR T cell product, for its antitumor efficacy and expansion in orthotopic models of human AML, cytotoxicity in the presence of soluble FLT3 (sFLT3), performance compared with previously described anti-FLT3 CARs and potential for off-target binding of the scFv to normal human tissues. To produce ALLO-819, T cells derived from healthy donors were activated and transduced with a lentiviral construct for expression of the lead anti-FLT3 CAR followed by efficient knockout of TRAC and CD52. ALLO-819 manufactured from multiple donors was insensitive to ALLO-647 (100 µg/mL) in in vitro assays, suggesting that it would avoid elimination by the lymphodepletion regimen. In orthotopic models of AML (MV4-11 and EOL-1), ALLO-819 exhibited dose-dependent expansion and cytotoxic activity, with peak CAR T cell levels corresponding to maximal antitumor efficacy. Intriguingly, ALLO-819 showed earlier and more robust peak expansion in mice engrafted with MV4-11 target cells, which express lower levels of the antigen relative to EOL-1 cells (n=2 donors). To further assess the potency of ALLO-819, multiple anti-FLT3 scFvs that had been described in previous reports were cloned into lentiviral constructs that were used to generate CAR T cells following the standard protocol. In these comparative studies, the ALLO-819 CAR displayed high transduction efficiency and superior performance across different donors. Furthermore, the effector function of ALLO-819 was equivalent to that observed in FLT3 CAR T cells with normal expression of TCR and CD52, indicating no effects of TALEN® treatment on CAR T cell activity. Plasma levels of sFLT3 are frequently increased in patients with AML and correlate with tumor burden, raising the possibility that sFLT3 may act as a decoy for FLT3 CAR T cells. To rule out an inhibitory effect of sFLT3 on ALLO-819, effector and target cells were cultured overnight in the presence of increasing concentrations of recombinant sFLT3. We found that ALLO-819 retained its killing properties even in the presence of supraphysiological concentrations of sFLT3 (1 µg/mL). To investigate the potential for off-target binding of the ALLO-819 CAR to human tissues, tissue cross-reactivity studies were conducted using a recombinant protein consisting of the extracellular domain of the CAR fused to human IgG Fc. Consistent with the limited expression pattern of FLT3 and indicative of the high specificity of the lead scFv, no appreciable membrane staining was detected in any of the 36 normal tissues tested (n=3 donors). Taken together, our results support clinical development of ALLO-819 as a novel and effective CAR T cell therapy for the treatment of AML. Disclosures Sommer: Allogene Therapeutics, Inc.: Employment, Equity Ownership. Cheng:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Yeung:Pfizer Inc.: Employment, Equity Ownership. Nguyen:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Sutton:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Melton:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Valton:Cellectis, Inc.: Employment, Equity Ownership. Poulsen:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Djuretic:Pfizer, Inc.: Employment, Equity Ownership. Van Blarcom:Allogene Therapeutics, Inc.: Employment, Equity Ownership. Chaparro-Riggers:Pfizer, Inc.: Employment, Equity Ownership. Sasu:Allogene Therapeutics, Inc.: Employment, Equity Ownership.


2020 ◽  
Vol 29 ◽  
pp. 096368972092082 ◽  
Author(s):  
Zhixiong Wang ◽  
Guomin Zhou ◽  
Na Risu ◽  
Jiayu Fu ◽  
Yan Zou ◽  
...  

Chimeric antigen receptor (CAR) T-cell immunotherapy still faces many challenges in the treatment of solid tumors, one of which is T-cell dysfunction or exhaustion. Immunomodulator lenalidomide may improve CAR T-cell function. In this study, the effects of lenalidomide on CAR T-cell functions (cytotoxicity, cytokine secretion, and cell proliferation) were investigated. Two different CAR T cells (CD133-specific CAR and HER2-specific CAR) were prepared, and the corresponding target cells including human glioma cell line U251 CD133-OE that overexpress CD133 and human breast cancer cell line MDA-MB-453 were used for functional assay. We found that lenalidomide promoted the killing of U251 CD133-OE by CD133-CAR T cells, the cytokine secretion, and the proliferation of CD133-CAR T cells. Lenalidomide also enhanced the cytotoxicity against MDA-MB-453 and the cytokine secretion of HER2-CAR T cells but did not affect their proliferation significantly. Furthermore, lenalidomide may regulate the function of CAR T cells by inducing the degradation of transcription factors Ikaros and Aiolos.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 12-12 ◽  
Author(s):  
Nikhil Hebbar ◽  
Rebecca Epperly ◽  
Abishek Vaidya ◽  
Sujuan Huang ◽  
Cheng Cheng ◽  
...  

Finding the ideal immunotherapy target for AML has proven challenging and is limited by overlapping expression of antigens on hematopoietic progenitor cells (HPCs) and AML blasts. Intracellular Glucose-regulated-protein 78 (GRP78) is a key UPR regulator, which normally resides in the endoplasmic reticulum (ER). GRP78 is overexpressed and translocated to the cell surface in a broad range of solid tumors and hematological malignancies in response to elevated ER stress, making it an attractive target for immune-based therapies with T cells expressing chimeric antigen receptors (CARs). The goal of this project was to determine the expression of GRP78 on pediatric AML samples, generate GRP78-CAR T cells, and evaluate their effector function against AML blasts in vitro and in vivo. To demonstrate overexpression of GRP78 in AML, we performed gene expression analysis by RNAseq on a cohort of cord blood CD34+ cell samples (N=5) and 74 primary AML samples. Primary AML samples included RUNX1-RUNX1T1 (N=7), CBFB-MYH11(N=17), KMT2A rearrangement (N=28) and NUP98 (N=22). Analysis showed increased GRP78 expression in AML samples, especially in KMT2A- and NUP98-rearranged AML. To demonstrate surface expression of GRP78, we performed flow cytometry of AML (Kg1a, MOLLM13, THP-1, MV4-11) cell lines as well as 11 primary AML samples and 5 PDX samples; non transduced (NT) T cells served as control. All AML samples, including cell lines, primary AML blasts, and PDX samples, showed increased expression of GRP78 on their cell surface in comparison to NT T cells We then designed a retroviral vector encoding a GRP78-CAR using a GRP78-specific peptide as an antigen recognition domain, and generated GRP78-CAR T cells by retroviral transduction of primary human T cells. Median transduction efficiency was 82% (± 5-8%, N=6), and immunophenotypic analysis showed a predominance of naïve and terminal effector memory subsets on day 7 after transduction (N=5). To determine the antigen specificity of GRP78-CAR T cells, we performed coculture assays in vitro with cell surface GRP78+ (AML cell lines: MOLM13, MV-4-11, and THP-1 and 3 AML PDX samples) or cell surface GRP78- (NT T cells) targets. T cells expressing CARs specific for HER2-, CD19-, or a non-functional GRP78 (DGRP78)-CAR served as negative controls. GRP78-CAR T cells secreted significant amounts of IFNg and IL-2 only in the presence of GRP78+ target cells (N=3, p<0.005); while control CAR T cells did not. GRP78-CAR T cells only killed GRP78+ target cells in standard cytotoxicity assays confirming specificity. To test the effects of GRP78-CAR T cells on normal bone marrow derived HPCs, we performed standard colony forming unit (CFU) assays post exposure to GRP78-CAR or NT T cells (effector to target (E:T) ratio 1:1 and 5:1) and determined the number of BFU-E, CFU-E, CFU-GM, and CFU-GEMM. No significant differences between GRP78-CAR and NT T cells were observed except for CFU-Es at an E:T ratio of 5:1 that was not confirmed for BFU-Es. Finally, we evaluated the antitumor activity of GRP78-CAR T cells in an in vivo xenograft AML model (MOLM13). Tumor growth was monitored by serial bioluminescence imaging. A single intravenous dose of GRP78-CAR T cells induced tumor regression, which resulted in a significant (p<0.001) survival advantage in comparison to mice that had received control CAR T cells. In conclusion, GRP78 is expressed on the cell surface of AML. GRP78-CAR T cells have potent anti-AML activity in vitro and in vivo and do not target normal HPCs. Thus, our cell therapy approach warrants further active exploration and has the potential to improve outcomes for patients with AML. Disclosures Hebbar: St. Jude: Patents & Royalties. Epperly:St. Jude: Patents & Royalties. Vaidya:St. Jude: Patents & Royalties. Gottschalk:TESSA Therapeutics: Other: research collaboration; Inmatics and Tidal: Membership on an entity's Board of Directors or advisory committees; Merck and ViraCyte: Consultancy; Patents and patent applications in the fields of T-cell & Gene therapy for cancer: Patents & Royalties. Velasquez:St. Jude: Patents & Royalties; Rally! Foundation: Membership on an entity's Board of Directors or advisory committees.


2015 ◽  
Vol 3 (5) ◽  
pp. 483-494 ◽  
Author(s):  
Alexander J. Davenport ◽  
Misty R. Jenkins ◽  
Ryan S. Cross ◽  
Carmen S. Yong ◽  
H. Miles Prince ◽  
...  

2021 ◽  
Author(s):  
Katherine Mueller ◽  
Nicole Piscopo ◽  
Matthew Forsberg ◽  
Louise Saraspe ◽  
Amritava Das ◽  
...  

Chimeric antigen receptor (CAR) T cells traditionally harbor viral vectors that encode the CAR transgene in the genome. However, viral vector manufacturing typically is resource intensive, suffers from batch-to-batch variability, and includes several animal components, adding regulatory and supply chain pressures. Here, CAR T cells were generated within nine days using recombinant SpCas9 protein and nucleic acids, without any viral vectors or animal components. In comparison to traditional retroviral CAR T cells, nonviral CRISPR CAR T cells exhibit TRAC-targeted genomic integration of the CAR transgene, higher frequency of gene expression signatures associated with a memory phenotype, low receptor signaling prior to infusion, and potent cytotoxicity against GD2+ neuroblastoma in vitro and in vivo. This proof-of-principle study eliminating viral vectors and animal components during CAR gene transfer could enable more flexible and scalable manufacturing of clinically-relevant, high-quality CAR T cells to treat cancers, including solid tumors.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1422
Author(s):  
Vita Golubovskaya ◽  
Hua Zhou ◽  
Feng Li ◽  
Robert Berahovich ◽  
Jinying Sun ◽  
...  

Multiple myeloma (MM) is a hematological cancer caused by abnormal proliferation of plasma cells in the bone marrow, and novel types of treatment are needed for this deadly disease. In this study, we aimed to develop novel CS1 CAR-T cells and bispecific CS1-BCMA CAR-T cells to specifically target multiple myeloma. We generated a new CS1 (CD319, SLAM-7) antibody, clone (7A8D5), which specifically recognized the CS1 antigen, and we applied it for the generation of CS1-CAR. CS1-CAR-T cells caused specific killing of CHO-CS1 target cells with secretion of IFN-gamma and targeted multiple myeloma cells. In addition, bispecific CS1-BCMA-41BB-CD3 CAR-T cells effectively killed CHO-CS1 and CHO-BCMA target cells, killed CS1/BCMA-positive multiple myeloma cells, and secreted IFN-gamma. Moreover, CS1-CAR-T cells and bispecific CS1-BCMA CAR-T cells effectively blocked MM1S multiple myeloma tumor growth in vivo. These data for the first time demonstrate that novel CS1 and bispecific CS1-BCMA-CAR-T cells are effective in targeting MM cells and provide a basis for future clinical trials.


2017 ◽  
Vol 13 (01) ◽  
pp. 28 ◽  
Author(s):  
Andrew Fesnak ◽  
Una O’Doherty ◽  
◽  

Adoptive transfer of chimeric antigen receptor (CAR) T cells is a powerful targeted immunotherapeutic technique. CAR T cells are manufactured by harvesting mononuclear cells, typically via leukapheresis from a patient’s blood, then activating, modifying the T cells to express a transgene encoding a tumour-specific CAR, and infusing the CAR T cells into the patient. Gene transfer is achieved through the use of retroviral or lentiviral vectors, although non-viral delivery systems are being investigated. This article discusses the challenges associated with each stage of this process. Despite the need for a consistent end product, there is inherent variability in cellular material obtained from critically ill patients who have been exposed to cytotoxic therapy. It is important to carefully select target antigens to maximise effect and minimise toxicity. Various types of CAR T cell toxicity have been documented: this includes “on target, on tumour”, “on target, off tumour” and “off target” toxicity. A growing body of clinical evidence supports the efficacy and safety of CAR T cell therapy; CAR T cells targeting CD19 in B cell leukemias are the best-studied therapy to date. However, providing personalised therapy on a large scale remains challenging; a future aim is to produce a universal “off the shelf” CAR T cell.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 407-407
Author(s):  
Frank Cichocki ◽  
Jode P Goodridge ◽  
Ryan Bjordahl ◽  
Svetlana Gaidarova ◽  
Sajid Mahmood ◽  
...  

Abstract Treatments for B-cell malignancies have improved over the past several decades with clinical application of the CD20-specific antibody rituximab and chimeric antigen receptor (CAR) T cells targeting CD19. Despite the success of these therapies, loss of CD20 after rituximab treatment has been reported in leukemia and lymphoma patients. Additionally, up to 50% of all patients receiving anti-CD19 CAR T-cell therapy relapse within the first year with many of those patients exhibiting CD19 loss. Thus, new therapeutic approaches are needed to address tumor antigen escape. Accordingly, we generated triple gene-modified iPSC-derived NK (iNK) cells, termed "iDuo" NK cells, tailored to facilitate multi-antigen targeting. The iPSC line was clonally engineered to express high-affinity, non-cleavable CD16a (hnCD16), an anti-CD19 CAR optimized for NK cell signaling, and a membrane-bound IL-15/IL-15R fusion (IL-15RF) molecule to enhance NK cell persistence (Fig. 1A). To model antigen escape, we generated CD19 knockout AHR77 lymphoma cells alongside wild type AHR77 cells (both CD20 +) as targets in cytotoxicity assays. Activated peripheral blood NK (PBNK) cells, non-transduced iNK cells, and iDuo NK cells were tested as effectors. Unlike PBNK cells or non-transduced iNK cells, iDuo NK cells efficiently eliminated wild type AHR77 cells with or without the addition of rituximab at all tested E:T ratios. Similarly, iDuo NK cells in combination with rituximab were uniquely able to efficiently eliminate CD19 KO AHR77 cells due to enhanced antibody-dependent cellular cytotoxicity (ADCC) driven by hnCD16 (Fig. 1B-E). Cytotoxicity mediated by iDuo NK cells was also evaluated using primary chronic lymphocytic leukemia (CLL) cells. Compared to expanded PBNK cells and non-transduced iNK cells, only iDuo NK cells (in the absence of rituximab) were able to kill primary CLL cells (Fig. 1F). Expression of IL-15RF by iDuo NK cells uniquely supports in vitro expansion without the need for cytokine supplementation. To determine whether IL-15RF supports in vivo persistence of iDuo NK cells, CD19 CAR iNK cells (lacking IL-15RF) and iDuo NK cells were injected into NSG mice without the addition of cytokines or CD19 antigen availability. iDuo NK cell numbers peaked within a week after injection and persisted at measurable levels for ~5 weeks, in marked contrast to CD19 CAR iNK cell numbers that were undetectable throughout (Fig. 1G). To evaluate the in vivo function of iDuo NK cells, NALM6 leukemia cells were engrafted into NSG mice. Groups of mice received tumor alone or were treated with 3 doses of thawed iDuo NK cells. iDuo NK cells alone were highly effective in this model as evidenced by complete survival of mice in the treatment group (Fig. 1H). To assess iDuo NK cells in a more aggressive model, Raji lymphoma cells were engrafted, and groups of mice received rituximab alone, iDuo NK cells alone, or iDuo NK cells plus rituximab. Mice given the combination of iDuo NK cells and rituximab provided extended survival compared to all other arms in the aggressive disseminated Raji lymphoma xenograft model (Fig. 1I). One disadvantage of anti-CD19 CAR T cells is their inability to discriminate between healthy and malignant B cells. Because NK cells express inhibitory receptors that enable "self" versus "non-self" discrimination, we reasoned that iDuo NK cells could have higher cytotoxicity against tumor cells relative to healthy B cells. To address this, we labeled Raji cells, CD19 + B cells from healthy donor peripheral blood mononuclear cells (PBMCs) and CD19 - PBMCs. Labeled populations of cells were co-cultured with iDuo NK cells, and specific killing was analyzed. As expected, iDuo NK cells did not target CD19 - PBMCs. Intriguingly, iDuo NK cells had much higher cytotoxic activity against Raji cells compared to primary CD19 + B cells, suggesting a preferential targeting of malignant B cells compared to healthy B cells. Together, these results demonstrate the potent multi-antigen targeting capability and in vivo antitumor function of iDuo NK cells. Further, these data suggest that iDuo NK cells may have an additional advantage over anti-CD19 CAR T cells by discriminating between healthy and malignant B cells. The first iDuo NK cell, FT596, is currently being tested in a Phase I clinical trial (NCT04245722) for the treatment of B-cell lymphoma. Figure 1 Figure 1. Disclosures Cichocki: Gamida Cell: Research Funding; Fate Therapeutics, Inc: Patents & Royalties, Research Funding. Bjordahl: Fate Therapeutics: Current Employment. Gaidarova: Fate Therapeutics, Inc: Current Employment. Abujarour: Fate Therapeutics, Inc.: Current Employment. Rogers: Fate Therapeutics, Inc: Current Employment. Huffman: Fate Therapeutics, Inc: Current Employment. Lee: Fate Therapeutics, Inc: Current Employment. Szabo: Fate Therapeutics, Inc: Current Employment. Wong: BMS: Current equity holder in publicly-traded company; Fate Therapeutics, Inc: Current Employment. Cooley: Fate Therapeutics, Inc: Current Employment. Valamehr: Fate Therapeutics, Inc.: Current Employment. Miller: Magenta: Membership on an entity's Board of Directors or advisory committees; ONK Therapeutics: Honoraria, Membership on an entity's Board of Directors or advisory committees; Vycellix: Consultancy; GT Biopharma: Consultancy, Patents & Royalties, Research Funding; Fate Therapeutics, Inc: Consultancy, Patents & Royalties, Research Funding; Sanofi: Membership on an entity's Board of Directors or advisory committees; Wugen: Membership on an entity's Board of Directors or advisory committees.


2022 ◽  
Author(s):  
Hanyu Pan ◽  
Jing Wang ◽  
Huitong Liang ◽  
Zhengtao Jiang ◽  
Lin Zhao ◽  
...  

HIV-specific chimeric antigen receptor (CAR) T cells have been developed to target latently infected CD4+ T cells that express virus either spontaneously or after intentional latency reversal. However, the T-cell exhaustion and the patient-specific autologous paradigm of CAR-T hurdled the clinical application. Here, we created HIV-specific CAR-T cells using human peripheral blood mononuclear cells and a 3BNC117-E27 CAR (3BE CAR) construct that enables the expression of PD-1 blocking scFv E27 and the single-chain variable fragment of the HIV-1-specific broadly neutralizing antibody 3BNC117 to target native HIV envelope glycoprotein (Env). In comparison with T cells expressing 3BNC117-CAR alone, 3BE CAR-T cells showed greater anti-HIV potency with stronger proliferation capability, higher killing efficiency (up to ~75%) and enhanced cytokine secretion in the presence of HIV envelope glycoprotein-expressing cells. Furthermore, our approach achieved high levels (over 97%) of the TCR-deficient 3BE CAR-T cells with the functional inactivation of endogenous TCR to avoid graft-versus-host disease without compromising their antiviral activity relative to standard anti-HIV CAR-T cells. These data suggest that we have provided a feasible approach to large-scale generation of "off-the-shelf" anti-HIV CAR-T cells in combination with antibody therapy of PD-1 blockade, which can be a powerful therapeutic candidate for the functional cure of HIV.


Sign in / Sign up

Export Citation Format

Share Document