scholarly journals Genetic Engineering of Zebrafish in Cancer Research

Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2168
Author(s):  
Ludivine Raby ◽  
Pamela Völkel ◽  
Xuefen Le Bourhis ◽  
Pierre-Olivier Angrand

Zebrafish (Danio rerio) is an excellent model to study a wide diversity of human cancers. In this review, we provide an overview of the genetic and reverse genetic toolbox allowing the generation of zebrafish lines that develop tumors. The large spectrum of genetic tools enables the engineering of zebrafish lines harboring precise genetic alterations found in human patients, the generation of zebrafish carrying somatic or germline inheritable mutations or zebrafish showing conditional expression of the oncogenic mutations. Comparative transcriptomics demonstrate that many of the zebrafish tumors share molecular signatures similar to those found in human cancers. Thus, zebrafish cancer models provide a unique in vivo platform to investigate cancer initiation and progression at the molecular and cellular levels, to identify novel genes involved in tumorigenesis as well as to contemplate new therapeutic strategies.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3808-3808 ◽  
Author(s):  
Jana M. Ellegast ◽  
Yasuyuki Saito ◽  
Richard A. Flavell ◽  
Markus G. Manz

Abstract Introduction Acute myeloid leukemia (AML) is a hematopoietic stem cell derived disease with still unsatisfactory treatment options. Its broad biological heterogeneity needs to be dissected by deeper mechanistic understanding to translate functional insights into novel therapeutic strategies. AML engraftment in murine models and subsequent in vivo studies have been limited to clinically aggressive AML and cell lines. In fact there is no published xenograft model for good risk AML. The hypothesis of a humanized environment being favorable for AML engraftment motivates the development of humanized mouse models for faithful in vivo analysis including biologically less aggressive, so called good risk AML. Material & methods We transplanted sublethally irradiated newborn MISTRG mice (Rongvaux et al. Nat. Biotech. 2014) that express as knock-ins human M-CSF, IL-3, GM-CSF, TPO and human SIRPa as transgene as well as NSG mice as controls i.h. with human AML samples. AML blasts were purified prior to transplantation by immunomagnetical CD3 and CD19 depletion to avoid xenogeneic graft versus host disease (GvHD) and EBV-driven B-cell proliferation/lymphoma, respectively. We selected AML samples with known genetic alterations representing good risk subgroups (AML with isolated NPM1 mutation or t(8;21)). Engraftment was assessed at different time points by peripheral blood analysis (cell counts and immunophenotyping) and bone marrow aspiration. Final analysis was completed by quantitative and histologic bone marrow analysis such as molecular diagnostics. Results Robust engraftment of good risk AML could be observed upon transplantation of patient samples into MISTRG mice: 87% of animals (n=15) engrafted (>1% hCD45+/ live cells) with a mean engraftment level of 61%. Time to and extent of engraftment depends on transplanted cell numbers, aggressiveness of disease and reaches its maximum around 16 to 20 weeks post transplantation in good risk AML when disease burden tends to limit survival. Gender of transplanted mice did not appear to influence engraftment. Engraftment was associated with a distinct phenotype including peripheral pancytopenia with leading anemia and splenomegaly with a significant positive correlation between engraftment level and spleen weight (Spearman r=0.6, p=0.03). We were able to show engraftment by immunophenotyping and molecular prove of preexisting genetic alterations. Engraftment levels in NSG mice were similar or inferior at any time (67% engraftment (n=6) with a mean engraftment level of 37% hCD45+/ live cells) and side to side comparison suggests an AML immunophenotype closer to human AML presentation in MISTRG mice. Engraftment did not seem to depend on SIRPa expression while preliminary data points towards a critical role of IL-3/GM-CSF and M-CSF. Conclusions Humanised mouse strains with differential human knock-ins provide suitable models to further dissect the disease supporting environment, which can then be translated into the development of direct therapeutic strategies. Disclosures No relevant conflicts of interest to declare.


2014 ◽  
Author(s):  
Raul M Luque ◽  
Mario Duran-Prado ◽  
David Rincon-Fernandez ◽  
Marta Hergueta-Redondo ◽  
Michael D Culler ◽  
...  

2019 ◽  
Author(s):  
Daniel Sun ◽  
Soumya Poddar ◽  
Roy D. Pan ◽  
Juno Van Valkenburgh ◽  
Ethan Rosser ◽  
...  

The lead compound, an ⍺-N-heterocyclic carboxaldehyde thiosemicarbazone <b>HCT-13</b>, was highly potent against a panel of pancreatic, small cell lung carcinoma, and prostate cancer models, with IC<sub>90</sub> values in the low-to-mid nanomolar range.<b> </b>We show that the cytotoxicity of <b>HCT-13</b> is copper-dependent, that it acts as a copper ionophore, induces production of reactive oxygen species (ROS), and promotes mitochondrial dysfunction and S-phase arrest. Lastly, DNA damage response/replication stress response (DDR/RSR) pathways, specifically Ataxia-Telangiectasia Mutated (ATM) and Rad3-related protein kinase (ATR), were identified as actionable adaptive resistance mechanisms following <b>HCT-13 </b>treatment. Taken together, <b>HCT-13 </b>is potent against solid tumor models and warrants <i>in vivo</i> evaluation against aggressive tumor models, either as a single agent or as part of a combination therapy.


2020 ◽  
Vol 14 ◽  
Author(s):  
Subhajit Makar ◽  
Abhrajyoti Ghosh ◽  
Divya ◽  
Shalini Shivhare ◽  
Ashok Kumar ◽  
...  

: Despite advances in the development of cytotoxic and targeted therapies, pancreatic adenocarcinoma (PAC) remains a significant cause of cancer mortality worldwide. It is also difficult to detect it at an early stage due to numbers of factors. Most of the patients are present with locally advanced or metastatic disease, which precludes curative resection. In the absence of effective screening methods, considerable efforts have been made to identify better systemic treatments during the past decade. This review describes the recent advances in molecular mechanisms involved in pancreatic cancer initiation, progression, and metastasis. Additionally, the importance of deregulated cellular signalling pathways and various cellular proteins as potential targets for developing novel therapeutic strategies against incurable forms of pancreatic cancer is reported. The emphasis is on the critical functions associated with growth factors and their receptors viz. c-MET/HGF, CTHRC1, TGF-β, JAK-STAT, cyclooxygenase pathway, WNT, CCK, MAPK-RAS-RAF, PI3K-AKT, Notch, src, IGF-1R, CDK2NA and chromatin regulation for the sustained growth, survival, and metastasis of pancreatic cancer cells. It also includes various therapeutic strategies viz. immunotherapy, surgical therapy, radiation therapy and chemotherapy.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 930
Author(s):  
Donatella Delle Cave ◽  
Riccardo Rizzo ◽  
Bruno Sainz ◽  
Giuseppe Gigli ◽  
Loretta L. del Mercato ◽  
...  

Pancreatic cancer, the fourth most common cancer worldwide, shows a highly unsuccessful therapeutic response. In the last 10 years, neither important advancements nor new therapeutic strategies have significantly impacted patient survival, highlighting the need to pursue new avenues for drug development discovery and design. Advanced cellular models, resembling as much as possible the original in vivo tumor environment, may be more successful in predicting the efficacy of future anti-cancer candidates in clinical trials. In this review, we discuss novel bioengineered platforms for anticancer drug discovery in pancreatic cancer, from traditional two-dimensional models to innovative three-dimensional ones.


Blood ◽  
2016 ◽  
Vol 127 (22) ◽  
pp. 2732-2741 ◽  
Author(s):  
Gero Knittel ◽  
Paul Liedgens ◽  
Darya Korovkina ◽  
Jens M. Seeger ◽  
Yussor Al-Baldawi ◽  
...  

Key Points B-cell–specific expression of Myd88p.L252P leads to the development of DLBCL in mice. The Myd88p.L252P mutation cooperates with BCL2 amplifications in ABC-DLBCL lymphomagenesis in vivo.


2021 ◽  
Vol 9 (1) ◽  
pp. e001341
Author(s):  
Chunxiao Li ◽  
Xiaofei Xu ◽  
Shuhua Wei ◽  
Ping Jiang ◽  
Lixiang Xue ◽  
...  

Macrophages are the most important phagocytes in vivo. However, the tumor microenvironment can affect the function and polarization of macrophages and form tumor-associated macrophages (TAMs). Usually, the abundance of TAMs in tumors is closely associated with poor prognosis. Preclinical studies have identified important pathways regulating the infiltration and polarization of TAMs during tumor progression. Furthermore, potential therapeutic strategies targeting TAMs in tumors have been studied, including inhibition of macrophage recruitment to tumors, functional repolarization of TAMs toward an antitumor phenotype, and other therapeutic strategies that elicit macrophage-mediated extracellular phagocytosis and intracellular destruction of cancer cells. Therefore, with the increasing impact of tumor immunotherapy, new antitumor strategies to target TAMs are now being discussed.


Author(s):  
Sabina Pozzi ◽  
Anna Scomparin ◽  
Sahar Israeli-Dangoor ◽  
Daniel Rodriguez ◽  
Paula Ofek ◽  
...  
Keyword(s):  

Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3024
Author(s):  
Martin Fogtmann Berthelsen ◽  
Maria Riedel ◽  
Huiqiang Cai ◽  
Søren H. Skaarup ◽  
Aage K. O. Alstrup ◽  
...  

The generation of large transgenic animals is impeded by complex cloning, long maturation and gastrulation times. An introduction of multiple gene alterations increases the complexity. We have cloned a transgenic Cas9 minipig to introduce multiple mutations by CRISPR in somatic cells. Transgenic Cas9 pigs were generated by somatic cell nuclear transfer and were backcrossed to Göttingen Minipigs for two generations. Cas9 expression was controlled by FlpO-mediated recombination and was visualized by translation from red to yellow fluorescent protein. In vitro analyses in primary fibroblasts, keratinocytes and lung epithelial cells confirmed the genetic alterations executed by the viral delivery of single guide RNAs (sgRNA) to the target cells. Moreover, multiple gene alterations could be introduced simultaneously in a cell by viral delivery of sgRNAs. Cells with loss of TP53, PTEN and gain-of-function mutation in KRASG12D showed increased proliferation, confirming a transformation of the primary cells. An in vivo activation of Cas9 expression could be induced by viral delivery to the skin. Overall, we have generated a minipig with conditional expression of Cas9, where multiple gene alterations can be introduced to somatic cells by viral delivery of sgRNA. The development of a transgenic Cas9 minipig facilitates the creation of complex pre-clinical models for cancer research.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii62-ii62
Author(s):  
Elisa Izquierdo ◽  
Diana Carvalho ◽  
Alan Mackay ◽  
Sara Temelso ◽  
Jessica K R Boult ◽  
...  

Abstract The survival of children with diffuse intrinsic pontine glioma (DIPG) remains dismal, with new treatments desperately needed. In the era of precision medicine, targeted therapies represent an exciting treatment opportunity, yet resistance can rapidly emerge, playing an important role in treatment failure. In a prospective biopsy-stratified clinical trial, we combined detailed molecular profiling (methylation BeadArray, exome, RNAseq, phospho-proteomics) linked to drug screening in newly-established patient-derived models of DIPG in vitro and in vivo. We identified a high degree of in vitro sensitivity to the MEK inhibitor trametinib (GI50 16-50nM) in samples, which harboured genetic alterations targeting the MAPK pathway, including the non-canonical BRAF_G469V mutation, and those affecting PIK3R1 and NF1. However, treatment of PDX models and of a patient with trametinib at relapse failed to elicit a significant response. We generated trametinib-resistant clones (62-188-fold, GI50 2.4–5.2µM) in the BRAF_G469V model through continuous drug exposure, and identified acquired mutations in MEK1/2 (MEK1_K57N, MEK1_I141S and MEK2_I115N) with sustained pathway up-regulation. These cells showed the hallmarks of mesenchymal transition, and expression signatures overlapping with inherently trametinib-insensitive primary patient-derived cells that predicted an observed sensitivity to dasatinib. Combinations of trametinib with dasatinib and the downstream ERK inhibitor ulixertinib showed highly synergistic effects in vitro. These data highlight the MAPK pathway as a therapeutic target in DIPG, and show the importance of parallel resistance modelling and rational combinatorial treatments likely to be required for meaningful clinical translation.


Sign in / Sign up

Export Citation Format

Share Document