scholarly journals A Mathematical Model of Average Dynamics in a Stem Cell Hierarchy Suggests the Combinatorial Targeting of Cancer Stem Cells and Progenitor Cells as a Potential Strategy against Tumor Growth

Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2590
Author(s):  
Rodolfo Molina-Peña ◽  
Juan Carlos Tudon-Martinez ◽  
Osvaldo Aquines-Gutiérrez

The cancer stem cell hypothesis states that tumors are maintained by a small subpopulation of stem-like cells, often called cancer stem cells (CSCs) or tumor initiating cells. CSCs can self-renew and give rise to more differentiated cells, which comprise the bulk of the tumor. In addition, CSCs are resistant to conventional therapy, which suggests that they are responsible for tumor relapse. This has led researchers to increase efforts to develop directed therapies against CSCs. However, some experiments in mice have shown that the elimination of CSCs might not ensure tumor eradication. This may be due to different events, such as residual CSCs after treatment, the plasticity of cells within the tumor, the presence of different CSCs having their own hierarchy within the same tumor, and the ability of more differentiated cells to maintain the disease, among others. Trying to decipher this complexity may benefit from dissecting the whole in its parts. Here, we hypothesize that tumor relapse after the selective targeting of CSCs may be due to intermediate progenitor (P) cells that can maintain the tumor volume. In order to support the hypothesis, we implemented a mathematical model derived using pseudo-reactions representing the events of each cell subpopulation within the tumor. We aimed to test if a minimal unidirectional hierarchical model consisting of CSCs, P, and terminally differentiated (D) cells could be adjusted to experimental data for selective CSC targeting. We further evaluated therapies ranging from nonselective to specifically directed and combination therapy. We found that selective killing of the CSC compartment has a delaying effect on the overall exponential tumor growth, but was not able to eliminate the disease. We show that therapy that targets both CSCs and intermediate progenitor (P) cells with a sufficient capacity to proliferate and differentiate could represent a more efficient treatment option for tumor depletion. Testing this hypothesis in vivo may allow us to discriminate within the array of possibilities of tumor relapse, and further open the idea of combination therapy against different subpopulations of tumor cells instead of segregating CSCs and bulk tumor cells.

2021 ◽  
Vol 11 ◽  
Author(s):  
Thahomina Khan ◽  
Horacio Cabral

Cancer stem cell (CSCs) are deemed as one of the main reasons of tumor relapse due to their resistance to standard therapies. Numerous intracellular signaling pathways along with extracellular features are crucial in regulating CSCs properties, such as heterogeneity, plasticity and differentiation. Aberrant glycosylation of these cellular signaling pathways and markers of CSCs have been directly correlated with maintaining survival, self-renewal and extravasation properties. In this review, we highlight the importance of glycosylation in promoting stemness character of CSCs, and present strategies for targeting abnormal glycosylation to eliminate the resistant CSC population.


2019 ◽  
Vol 16 (6) ◽  
pp. 7177-7194
Author(s):  
Samantha L Elliott ◽  
◽  
Emek Kose ◽  
Allison L Lewis ◽  
Anna E Steinfeld ◽  
...  

2015 ◽  
Author(s):  
Benjamin Werner ◽  
Jacob G Scott ◽  
Andrea Sottoriva ◽  
Alexander RA Anderson ◽  
Arne Traulsen ◽  
...  

Cancers arise as a result of genetic and epigenetic alterations. These accumulate in cells during the processes of tissue development, homeostasis and repair. Many tumor types are hierarchically organized and driven by a sub-population of cells often called cancer stem cells. Cancer stem cells are uniquely capable of recapitulating the tumor and can be highly resistant to radio- and chemotherapy treatment. We investigate tumor growth patterns from a theoretical standpoint and show how significant changes in pre- and post-therapy tumor dynamics are tied to the dynamics of cancer stem cells. We identify two characteristic growth regimes of a tumor population that can be leveraged to estimate cancer stem cell fractions in vivo using simple linear regression. Our method is a mathematically exact result, parameter free and does not require any microscopic knowledge of the tumor properties. A more accurate quantification of the direct link between the sub-population driving tumor growth and treatment response promises new ways to individualize treatment strategies.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. SCI-6-SCI-6
Author(s):  
Constantine S. Mitsiades

Abstract Abstract SCI-6 The concept of cancer stem cells has attracted again intense research interest, as the drug resistance attributed to this infrequent subpopulation of tumor cells could explain how patients can relapse even after prolonged complete clinical, biochemical, radiologic or even molecular remissions. In multiple myeloma (MM), several aspects of the cancer stem cell concept remain to be elucidated, including the potential heterogeneity of this cell subpopulation or whether CD138+ expression is incompatible or not with a MM stem cell. As these questions are being resolved, emerging data highlight that the drug resistance of MM cells with clonogenic/stem cell-like features is heavily influenced by interactions with non-malignant accessory cells of the local microenvironment, including bone marrow stromal cells (BMSCs). Indeed, transcriptional signatures of “stemness”, as identified in normal stem cells or cancer stem cells from other neoplasias, are detected in the bulk population of MM cell lines and are upregulated after MM cell interaction with BMSCs. MM cell lines and primary tumor cells contain subpopulations with clonogenic potential, such as the side population (SP) cells. SP cells, detected by low intracellular accumulation of Hoechst 33342 dye (in contrast to the tumor's “main population” (MP), are considered an enriched source of tumor-initiating cells in diverse neoplasias and were detected among CD138− CD20+ CD27+ clonogenic cells in primary MM samples. Interaction with BMSCs increases the viability of SP cells and their percentage within the MM cell population. While interaction with BMSCs or other accessory cells of the microenvironmental niche suppresses the anti-MM activity of glucocorticoids, conventional chemotherapeutics and certain investigational agents, other agents (e.g. immunomodulatory thalidomide derivatives (IMIDs), such as lenalidomide) have increased activity against MM SP cells in the context of this tumor-microenvironment interaction. These observations suggest that MM cells with stem cell-like features exhibit functional plasticity depending on which specific microenvironmental niche they interact with. The Hedgehog, Wnt and Notch pathways, as well as regulators of chromatin remodeling, e.g. histone demethylases, have emerged as putative links between drug resistance, “cancer stemness” and how these functional outcomes are modulated by the local microenvironment in MM. These pathways, as well as embryonic stem cell-associated antigens (e.g. SOX2), represent intriguing targets for investigational therapies. However, clinical translation of such treatments has notable challenges, as conventional criteria for response assessment may not accurately reflect the treatment's impact on clonogenic tumor cells. Progression-free survival is considered a more appropriate endpoint for cancer stem-cell targeting agents, its assessment, however, may be confounded without concomitant treatment that suppresses the bulk of the tumor. Consequently, candidate cancer stem cell-targeting agents may have to be evaluated in combination with regimens (including lenalidomide-bortezomib-Dex (RVD) or other combinations built around the therapeutic “backbone” of proteasome inhibition and IMIDs) which potently target the bulk MM cell population and induce high rates of complete/near complete responses. Further improvements of this dual targeting of clonogenic and bulk tumor cells may be facilitated by recently developed high-throughput platforms (e.g. compartment-specific bioluminescence imaging, CS-BLI) which screen, in the presence vs. absence of stroma or other accessory cells, large numbers of anti-tumor agents and combinations thereof against the bulk tumor cell population or its clonogenic compartments. These new platforms will inform the rational design of regimens that will hopefully improve the long-term outcome of MM patients by suppressing a clonogenic/stem cell-like tumor compartment and circumventing microenvironment-dependent drug resistance. Disclosures: Mitsiades: Millennium: Consultancy, Honoraria; Novartis Pharmaceuticals: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria; Merck &Co.: Consultancy, Honoraria; Kosan Pharmaceuticals: Consultancy, Honoraria; Pharmion: Consultancy, Honoraria; Centrocor: Consultancy, Honoraria; PharmaMar: Patents & Royalties; OSI Pharmaceuticals: Research Funding; Amgen Pharmaceuticals: Research Funding; AVEO Pharma: Research Funding; EMD Serono: Research Funding; Sunesis: Research Funding; Gloucester Pharmaceuticals: Research Funding.


Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769591 ◽  
Author(s):  
Sheefa Mirza ◽  
Nayan Jain ◽  
Rakesh Rawal

Lung cancer stem cells are supposed to be the main drivers of tumor initiation, maintenance, drug resistance, and relapse of the disease. Hence, identification of the cellular and molecular aspects of these cells is a prerequisite for targeted therapy of lung cancer. Currently, analysis of circulating tumor cells has the potential to become the main diagnostic technique to monitor disease progression or therapeutic response as it is non-invasive. However, accurate detection of circulating tumor cells has remained a challenge, as epithelial cell markers used so far are not always trustworthy for detecting circulating tumor cells, especially during epithelial–mesenchymal transition. As cancer stem cells are the only culprit to initiate metastatic tumors, our aim was to isolate and characterize circulating tumor stem cells rather than circulating tumor cells from the peripheral blood of NSCLC adenocarcinoma as limited data are available addressing the gene expression profiling of lung cancer stem cells. Here, we reveal that CD44(+)/CD24(−) population in circulation not only exhibit stem cell–related genes but also possess epithelial–mesenchymal transition characteristics. In conclusion, the use of one or more cancer stem cell markers along with epithelial, mesenchymal and epithelial mesenchymal transition markers will prospectively provide the most precise assessment of the threat for recurrence and metastatic disease and has a great potential for forthcoming applications in harvesting circulating tumor stem cells and their downstream applications. Our results will aid in developing diagnostic and prognostic modalities and personalized treatment regimens like dendritic cell–based immunotherapy that can be utilized for targeting and eliminating circulating tumor stem cells, to significantly reduce the possibility of relapse and improve clinical outcomes.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yantao Liu ◽  
Yuping Yang ◽  
Lingli Zhang ◽  
Jiaqiang Lin ◽  
Bin Li ◽  
...  

Abstract Background Non-small cell lung cancer (NSCLC) is a major cause of cancer-related death worldwide, and cancer stem cell is responsible for the poor clinical outcome of NSCLC. Previous reports indicated that long noncoding RNAs (lncRNAs) play important roles in maintaining cancer stemness, however, the underlying mechanisms remain unclear. This study investigates the role of ASAP1 Intronic Transcript 1 (ASAP1-IT1) in cancer cell stemness of NSCLC. Methods The expression of ASAP1-IT1, microRNA-509-3p (miR-509-3p) and apoptosis-/stemness-related genes was analyzed by qRT-PCR in NSCLC tissues, cancer cells and spheres of cancer stem cells. Knockdown of ASAP1-IT1 or overexpression of miR-509-3p in NSCLC cells by infection or transfection of respective plasmids. Sphere formation and colony formation were used to detect NSCLC stem cell-like properties and tumor growth in vitro. Luciferase reporter assays, RNA immunoprecitation (RIP) and qRT-PCR assays were used to analyze the interaction between lncRNA and miRNA. The expression of expression of regulated genes of ASAP1-IT1/miR-509-3p axis was evaluated by qRT-PCR and Western blot. The NSCLC xenograft mouse model was used to validate the role of ASAP1-IT1 in NSCLC stemness and tumor growth in vivo. Results ASAP1-IT1 was up-regulated in NSCLC tissues, cancer cells, and in spheres of A549-derived cancer stem cells. Downregulation of ASAP1-IT1 or overexpression of miR-509-3p significantly decreased cell colony formation and stem cell-like properties of A549-dereived stem cells with decreased expression of stem cell biomarkers SOX2, CD34, and CD133, and suppressing the expression of cell growth-related genes, Cyclin A1, Cyclin B1, and PCNA. Furthermore, knockdown of ASAP1-IT1 or overexpression of miR-509-3p repressed tumor growth in nude mice via reducing expression of tumorigenic genes. ASAP1-IT1 was found to interact with miR-509-3p. Moreover, overexpression of ASAP1-IT1 blocked the inhibition by miR-509-3p on stem cell-like properties and cell growth of A549-dereived stem cells both in vitro and in vivo. Finally, the level of YAP1 was regulated by ASAP1-IT1 and miR-509-3p. Conclusions YAP1-involved ASAP1-IT1/miR-509-3p axis promoted NSCLC progression by regulating cancer cell stemness, and targeting this signaling pathway could be is a promising therapeutic strategy to overcome NSCLC stemness.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 495-495
Author(s):  
Haiming Chen ◽  
Mingjie Li ◽  
Eric Sanchez ◽  
Cathy S Wang ◽  
Ariana M Berenson ◽  
...  

Abstract Cancer stem cells persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumors. Development of specific therapies targeted at cancer stem cells gives hope for improvement in the survival and quality life of cancer patients. Multiple myeloma (MM) is a cancer characterized by clonal expansion of terminally differentiated B cells. In order to characterize whether cancer stem cells can be identified in these patients, fresh bone marrow biopsies with 90% MM cells from MM patients were implanted into the superficial gluteal muscle of C.B-17 severe combined immunodeficient (SCID) mice. The tumors were excised from donor mice two months following implantation, and digested with proteinase-E to produce a single cell suspension. These cells were analyzed using flow cytometry to identify specific cellular phenotypes within the tumor population. Approximately 13% of the tumor cells were CD138+ cells, 1–2% CD20+ cells and 2–3% CD133+ cells. To examine gene expression within these populations, we isolated the tumor cells using immunomagnetic bead selection. Cells (1X108) were incubated with 200ml of anti-CD138 microbeads and either anti-CD133 or CD20 microbeads. The cell suspension was applied to the magnetic column and unbound cells were passed through the column by washing followed by centrifugation, and finally resuspended. Total RNA was purified from the cells and gene expression of each population was examined using RT-PCR analysis of specific previously identified stem cell-related transcription factors. β-catenin plays a critical role in stem cell development; and, furthermore, the Wnt-β-catenin signaling pathway is important for maintaining the balance of proliferation versus differentiation in the stem cell population. The gene expression of KLT-4, Oct-4, SOX2, and C-myc has recently been shown to convert nonterminally differentiated B cells into a pluripotent stem cell state. In our studies, we found that the CD20+/CD138− and CD133+/CD138− subpopulations both expressed high levels of β-catenin, KLT-4, Oct-4, SOX2, and C-myc. These small populations of tumor cells are likely to represent MM cancer stem cells as they express genes consistently identified in cancer stem cells identified in other types of cancers. We unexpectedly found that CD138+ cells also expressed β-catenin, KLT-4, Oct-4, SOX2, and C-myc. This population of cells might be a “premature” tumor cell in MM at a middle stage of tumor cell differentiation which ultimately differentiates into a mature MM cell. Only CD20−/CD138− cells showed no expression of β-catenin, KLT-4 and SOX2 and markedly reduced Oct-4 gene expression whereas the amount of C-myc gene expression was similar to the levels in the other tumor cell subtypes. Only CD133−/CD138− cells lost β-catenin and showed a reduction in Oct-4 gene expression but still expressed the KLT-4, SOX2, and C-myc genes. To further examine these cancer stem cell and mature tumor cell populations in terms of growth in vivo, we have injected subcutaneously CD20+/CD138−, CD133+/CD138−, CD20−/CD138−, and CD133−/CD138− tumor cell subpopulations back into SCID mice. We will assess growth of cells from these subtypes in vivo as determined by changes in tumor volume and Ig protein levels. We also will determine the sensitivity of these subtypes in vivo to treatment with a variety of agents with anti-MM activity including bortezomib, lenalidomide, melphalan, and Doxil. These studies have uncovered specific subpopulations within the tumor clone of MM and identified differences in expression of genes known to be involved in stem cell function. Further work should lead to specific treatments that can effectively treat these different subpopulations within the tumor clone in MM.


Author(s):  
Andrew J. DeCastro ◽  
James DiRenzo

AbstractStem cells belong to a unique class of cells that is collectively responsible for the development and subsequent maintenance of all tissues comprising multicellular organisms. These cells possess unique characteristics that allow them to remain in a pluripotent state, while also continuing to generate differentiated cells. microRNAs, a specialized class of non-coding RNAs, are integral components of the network of pathways that modulates this combination of abilities. This review highlights recent discoveries about the roles miRNAs play in governing stem cell phenotype, and discusses the potential therapeutic utility that miRNAs may have in the treatment of multiple diseases. Additionally, it addresses a novel mode of regulation of stem cell phenotype through lincRNA-mediated modulation of select miRNAs, and the role of secreted, stem cell-derived miRNAs in exerting a paracrine influence on surrounding non-stem cells.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1198 ◽  
Author(s):  
Zeynep Firtina Karagonlar ◽  
Soheil Akbari ◽  
Mustafa Karabicici ◽  
Eren Sahin ◽  
Sanem Tercan Avci ◽  
...  

The complex and heterogeneous nature of hepatocellular carcinoma (HCC) hampers the identification of effective therapeutic strategies. Cancer stem cells (CSCs) represent a fraction of cells within tumors with the ability to self-renew and differentiate, and thus significantly contribute to the formation and maintenance of heterogeneous tumor mass. Increasing evidence indicates high plasticity in tumor cells, suggesting that non-CSCs could acquire stem cell properties through de-differentiation or reprogramming processes. In this paper, we reveal KLF4 as a transcription factor that can induce a CSC-like phenotype in non-CSCs through upregulating the EpCAM and E-CAD expression. Our studies indicated that KLF4 could directly bind to the promoter of EpCAM and increase the number of EpCAM+/CD133+ liver cancer stem cells (LCSCs) in the HuH7 HCC cell line. When KLF4 was overexpressed in EpCAM−/CD133− non-stem cells, the expressions of hepatic stem/progenitor cell genes such as CK19, EpCAM and LGR5 were significantly increased. KLF4 overexpressing non-stem cells exhibited greater cell viability upon sorafenib treatment, while the cell migration and invasion capabilities of these cells were suppressed. Importantly, we detected an increased membranous expression and colocalization of β-CAT, E-CAD and EpCAM in the KLF4-overexpressing EpCAM−/CD133− non-stem cells, suggesting that this complex might be required for the cancer stem cell phenotype. Moreover, our in vivo xenograft studies demonstrated that with a KLF4 overexpression, EpCAM−/CD133− non-stem cells attained an in vivo tumor forming ability comparable to EpCAM+/CD133+ LCSCs, and the tumor specimens from KLF4-overexpressing xenografts had increased levels of both the KLF4 and EpCAM proteins. Additionally, we identified a correlation between the KLF4 and EpCAM protein expressions in human HCC tissues independent of the tumor stage and differentiation status. Collectively, our data suggest a novel function for KLF4 in modulating the de-differentiation of tumor cells and the induction of EpCAM+/CD133+ LCSCs in HuH7 HCC cells.


Sign in / Sign up

Export Citation Format

Share Document