scholarly journals The Interplay between Long Noncoding RNAs and Proteins of the Epigenetic Machinery in Ovarian Cancer

Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2701
Author(s):  
Naiade Calanca ◽  
Cecilie Abildgaard ◽  
Cláudia Aparecida Rainho ◽  
Silvia Regina Rogatto

Comprehensive large-scale sequencing and bioinformatics analyses have uncovered a myriad of cancer-associated long noncoding RNAs (lncRNAs). Aberrant expression of lncRNAs is associated with epigenetic reprogramming during tumor development and progression, mainly due to their ability to interact with DNA, RNA, or proteins to regulate gene expression. LncRNAs participate in the control of gene expression patterns during development and cell differentiation and can be cell and cancer type specific. In this review, we described the potential of lncRNAs for clinical applications in ovarian cancer (OC). OC is a complex and heterogeneous disease characterized by relapse, chemoresistance, and high mortality rates. Despite advances in diagnosis and treatment, no significant improvements in long-term survival were observed in OC patients. A set of lncRNAs was associated with survival and response to therapy in this malignancy. We manually curated databases and used bioinformatics tools to identify lncRNAs implicated in the epigenetic regulation, along with examples of direct interactions between the lncRNAs and proteins of the epigenetic machinery in OC. The resources and mechanisms presented herein can improve the understanding of OC biology and provide the basis for further investigations regarding the selection of novel biomarkers and therapeutic targets.

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Jun Liu ◽  
Shan-Qiang Zhang ◽  
Jing Chen ◽  
Zhi-Bin Li ◽  
Jia-Xi Chen ◽  
...  

Background. Hepatocellular carcinoma (HCC) is a highly malignant disease, and it is characterized by rapid progression and low five-year survival rate. At present, there are no effective methods for monitoring the treatment and prognosis of HCC. Methods. The transcriptome and gene expression profiles of HCC were obtained from the Cancer Genome Atlas (TCGA) program, International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) databases. The random forest method was applied to construct a four-gene prognostic model based on RNA terminal phosphate cyclase like 1 (RCL1) expression. The Kaplan-Meier method was performed to evaluate the prognostic value of RCL1, long noncoding RNAs (AC079061, AL354872, and LINC01093), and four-gene signature (SPP1, MYBL2, TRNP1, and FTCD). We examined the relationship between RCL1 expression and immune cells infiltration, tumor mutation burden (TMB), and microsatellite instability (MSI). Results. The results of multiple databases indicated that the aberrant expression of RCL1 was associated with clinical outcome, immune cells infiltration, TMB, and MSI in HCC patients. Meanwhile, we found that long noncoding RNAs (AC079061, AL354872, and LINC01093) and RCL1 were significantly coexpressed in HCC patients. We also confirmed that the four-gene signature was an independent prognostic factor for HCC patients. Ferroptosis potential index, immune checkpoint molecules, and clinical feature were found to have obvious correlations with risk score. The area under the receiver operating characteristic curve values for the model were 0.7–0.8 in the training set and the validation set, suggesting high robustness of the four-gene signature. We then built a nomogram for facilitating the use in clinical practice. Conclusion. Our study demonstrated that RCL1 and a novel four-gene signature can be used as prognostic biomarkers for predicting clinical outcome in HCC patients; and this model may assist in individualized treatment monitoring of HCC patients in clinical practice.


ChemMedChem ◽  
2014 ◽  
Vol 9 (3) ◽  
pp. 505-510 ◽  
Author(s):  
Mariangela Morlando ◽  
Monica Ballarino ◽  
Alessandro Fatica ◽  
Irene Bozzoni

2009 ◽  
Vol 19 (Suppl 2) ◽  
pp. S30-S34 ◽  
Author(s):  
Sharon Marsh

Objectives:Taxane (paclitaxel or docetaxel) and platinum (cisplatin or carboplatin) chemotherapy is commonly used in the treatment of ovarian cancer. Despite an initial high response to therapy, the 5-year survival rate remains low. The identification of pharmacogenomic markers to identify patients unlikely to respond or at risk for severe toxicity will assist in the goal of individualizing ovarian cancer treatment.Materials and Methods:Most studies have assessed single nucleotide polymorphisms from genes involved in the pharmacokinetics and pharmacodynamics of the drugs.Results:Unfortunately, most markers identified have not been replicated in subsequent studies.Conclusions:Other mechanisms of variability, including epigenetic control of gene expression and copy number variation, may play important roles. In addition, nongenetic influences such as concurrent medications, and physiological and environmental factors could also affect individual responses to taxane and platinum therapy.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhang-Wei Liu ◽  
Nan Zhao ◽  
Yin-Na Su ◽  
Shan-Shan Chen ◽  
Xin-Jian He

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2021 ◽  
Vol 7 (11) ◽  
pp. eaba1187
Author(s):  
Rina Baba ◽  
Satoru Matsuda ◽  
Yuuichi Arakawa ◽  
Ryuji Yamada ◽  
Noriko Suzuki ◽  
...  

Persistent epigenetic dysregulation may underlie the pathophysiology of neurodevelopmental disorders, such as autism spectrum disorder (ASD). Here, we show that the inhibition of lysine-specific demethylase 1 (LSD1) enzyme activity normalizes aberrant epigenetic control of gene expression in neurodevelopmental disorders. Maternal exposure to valproate or poly I:C caused sustained dysregulation of gene expression in the brain and ASD-like social and cognitive deficits after birth in rodents. Unexpectedly, a specific inhibitor of LSD1 enzyme activity, 5-((1R,2R)-2-((cyclopropylmethyl)amino)cyclopropyl)-N-(tetrahydro-2H-pyran-4-yl)thiophene-3-carboxamide hydrochloride (TAK-418), almost completely normalized the dysregulated gene expression in the brain and ameliorated some ASD-like behaviors in these models. The genes modulated by TAK-418 were almost completely different across the models and their ages. These results suggest that LSD1 enzyme activity may stabilize the aberrant epigenetic machinery in neurodevelopmental disorders, and the inhibition of LSD1 enzyme activity may be the master key to recover gene expression homeostasis. TAK-418 may benefit patients with neurodevelopmental disorders.


Tumor Biology ◽  
2015 ◽  
Vol 36 (11) ◽  
pp. 8747-8754 ◽  
Author(s):  
Le-chi Ye ◽  
Li Ren ◽  
Jun-jun Qiu ◽  
De-xiang Zhu ◽  
Tao Chen ◽  
...  

2021 ◽  
Vol 72 (1) ◽  
Author(s):  
Andrzej T. Wierzbicki ◽  
Todd Blevins ◽  
Szymon Swiezewski

Plants have an extraordinary diversity of transcription machineries, including five nuclear DNA-dependent RNA polymerases. Four of these enzymes are dedicated to the production of long noncoding RNAs (lncRNAs), which are ribonucleic acids with functions independent of their protein-coding potential. lncRNAs display a broad range of lengths and structures, but they are distinct from the small RNA guides of RNA interference (RNAi) pathways. lncRNAs frequently serve as structural, catalytic, or regulatory molecules for gene expression. They can affect all elements of genes, including promoters, untranslated regions, exons, introns, and terminators, controlling gene expression at various levels, including modifying chromatin accessibility, transcription, splicing, and translation. Certain lncRNAs protect genome integrity, while others respond to environmental cues like temperature, drought, nutrients, and pathogens. In this review, we explain the challenge of defining lncRNAs, introduce the machineries responsible for their production, and organize this knowledge by viewing the functions of lncRNAs throughout the structure of a typical plant gene. Expected final online publication date for the Annual Review of Plant Biology, Volume 72 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 251.1-251
Author(s):  
J. M. Kim ◽  
H. J. Kang ◽  
S. J. Jung ◽  
B. W. Song ◽  
H. J. Jeong ◽  
...  

Background:Long noncoding RNAs (lncRNAs) have recently emerged as important biological regulators and the aberrant expression of lncRNAs has been reported in various diseases including cancer, cardiovascular disease, and diabetes mellitus. However, the role of lncRNAs in the pathogenesis of rheumatoid arthritis (RA) remains unknown.Objectives:Thus, we studied lncRNAs influenced by IL-1, which is one of the key mediators in the pathogenesis of RA, and also investigated whether regulation of NF-κB activation, which is known to be induced by IL-1, could lead to the changes of expression of those lncRNAs.Methods:Fibroblast-like synoviocytes (FLS) were obtained from the knee joints of the patients with RA. The next-generation sequencing (NGS) data were analyzed to identify differentially expressed lncRNAs between unstimulated RA FLS and IL-1-stimulated RA FLS. The expression levels of the top 5 candidates in NGS data were validated by RT-qPCR using extended number of unstimulated RA FLS and IL-1-stimulated RA FLS. IMD-0560, an inhibitor of IκB kinase (IKK) was used for the regulation of NF-κB activation. Activation and inhibition of NF-κB were confirmed by Western blotting. Changed expressions of the lncRNAs were identified by RT-qPCR.Results:NGS analysis revealed up-regulated 30 lncRNAs and down-regulated 15 lncRNAs in IL-1-treated RA FLS compared with unstimulated RA FLS. Top 5 lncRNAs were selected among 30 lncRNAs up-regulated by IL-1 in RA FLS based on fold-change with P-value cutoff. The up-regulated lncRNAs including NR_046035, NR_027783, NR_033422, NR_003133, and NR_049759 were validated by RT-qPCR. IMD-0560 inhibited phosphorylation of IκBα induced by IL-1 in RA FLS. Overexpression of lncRNAs induced by IL-1 was also inhibited by IMD-0560 in RA FLS.Conclusion:Our study revealed that IL-1 increased the expression of NR_046035, NR_027783, NR_033422, NR_003133, and NR_049759 in RA FLS. In addition, the expression of these lncRNAs was regulated by inhibition of NF-κB activation. Thus, our data suggest that the lncRNAs might be involved in the pathogenesis of RA through NF-κB signaling pathway.References:[1]Long noncoding RNAs and human disease. Trends Cell Biol. 2011 Jun;21(6):354-61.[2]A long noncoding RNA mediates both activation and repression of immune response genes. Science. 2013 Aug 16;341(6147):789-92.[3]Long noncoding RNA expression profile in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Res Ther. 2016 Oct 6;18(1):227.Disclosure of Interests:None declared


2018 ◽  
Vol 115 (50) ◽  
pp. E11701-E11710 ◽  
Author(s):  
Yoong Wearn Lim ◽  
Haiyin Chen-Harris ◽  
Oleg Mayba ◽  
Steve Lianoglou ◽  
Arthur Wuster ◽  
...  

Cancer immunotherapy has emerged as an effective therapy in a variety of cancers. However, a key challenge in the field is that only a subset of patients who receive immunotherapy exhibit durable response. It has been hypothesized that host genetics influences the inherent immune profiles of patients and may underlie their differential response to immunotherapy. Herein, we systematically determined the association of common germline genetic variants with gene expression and immune cell infiltration of the tumor. We identified 64,094 expression quantitative trait loci (eQTLs) that associated with 18,210 genes (eGenes) across 24 human cancers. Overall, eGenes were enriched for their being involved in immune processes, suggesting that expression of immune genes can be shaped by hereditary genetic variants. We identified the endoplasmic reticulum aminopeptidase 2 (ERAP2) gene as a pan-cancer type eGene whose expression levels stratified overall survival in a subset of patients with bladder cancer receiving anti–PD-L1 (atezolizumab) therapy. Finally, we identified 103 gene signature QTLs (gsQTLs) that were associated with predicted immune cell abundance within the tumor microenvironment. Our findings highlight the impact of germline SNPs on cancer-immune phenotypes and response to therapy; and these analyses provide a resource for integration of germline genetics as a component of personalized cancer immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document