scholarly journals Radiomic Features and Machine Learning for the Discrimination of Renal Tumor Histological Subtypes: A Pragmatic Study Using Clinical-Routine Computed Tomography

Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3010
Author(s):  
Johannes Uhlig ◽  
Andreas Leha ◽  
Laura M. Delonge ◽  
Anna-Maria Haack ◽  
Brian Shuch ◽  
...  

This study evaluates the diagnostic performance of radiomic features and machine learning algorithms for renal tumor subtype assessment in venous computed tomography (CT) studies from clinical routine. Patients undergoing surgical resection and histopathological assessment of renal tumors at a tertiary referral center between 2012 and 2019 were included. Preoperative venous-phase CTs from multiple referring imaging centers were segmented, and standardized radiomic features extracted. After preprocessing, class imbalance handling, and feature selection, machine learning algorithms were used to predict renal tumor subtypes using 10-fold cross validation, assessed as multiclass area under the curve (AUC). In total, n = 201 patients were included (73.7% male; mean age 66 ± 11 years), with n = 131 clear cell renal cell carcinomas (ccRCC), n = 29 papillary RCC, n = 11 chromophobe RCC, n = 16 oncocytomas, and n = 14 angiomyolipomas (AML). An extreme gradient boosting algorithm demonstrated the highest accuracy (multiclass area under the curve (AUC) = 0.72). The worst discrimination was evident for oncocytomas vs. AML and oncocytomas vs. chromophobe RCC (AUC = 0.55 and AUC = 0.45, respectively). In sensitivity analyses excluding oncocytomas, a random forest algorithm showed the highest accuracy, with multiclass AUC = 0.78. Radiomic feature analyses from venous-phase CT acquired in clinical practice with subsequent machine learning can discriminate renal tumor subtypes with moderate accuracy. The classification of oncocytomas seems to be the most complex with the lowest accuracy.

Information ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 35
Author(s):  
Jibouni Ayoub ◽  
Dounia Lotfi ◽  
Ahmed Hammouch

The analysis of social networks has attracted a lot of attention during the last two decades. These networks are dynamic: new links appear and disappear. Link prediction is the problem of inferring links that will appear in the future from the actual state of the network. We use information from nodes and edges and calculate the similarity between users. The more users are similar, the higher the probability of their connection in the future will be. The similarity metrics play an important role in the link prediction field. Due to their simplicity and flexibility, many authors have proposed several metrics such as Jaccard, AA, and Katz and evaluated them using the area under the curve (AUC). In this paper, we propose a new parameterized method to enhance the AUC value of the link prediction metrics by combining them with the mean received resources (MRRs). Experiments show that the proposed method improves the performance of the state-of-the-art metrics. Moreover, we used machine learning algorithms to classify links and confirm the efficiency of the proposed combination.


2012 ◽  
pp. 830-850
Author(s):  
Abhilash Alexander Miranda ◽  
Olivier Caelen ◽  
Gianluca Bontempi

This chapter presents a comprehensive scheme for automated detection of colorectal polyps in computed tomography colonography (CTC) with particular emphasis on robust learning algorithms that differentiate polyps from non-polyp shapes. The authors’ automated CTC scheme introduces two orientation independent features which encode the shape characteristics that aid in classification of polyps and non-polyps with high accuracy, low false positive rate, and low computations making the scheme suitable for colorectal cancer screening initiatives. Experiments using state-of-the-art machine learning algorithms viz., lazy learning, support vector machines, and naïve Bayes classifiers reveal the robustness of the two features in detecting polyps at 100% sensitivity for polyps with diameter greater than 10 mm while attaining total low false positive rates, respectively, of 3.05, 3.47 and 0.71 per CTC dataset at specificities above 99% when tested on 58 CTC datasets. The results were validated using colonoscopy reports provided by expert radiologists.


2019 ◽  
Vol 19 (03) ◽  
pp. 1950014
Author(s):  
ALFREDO ARANDA ◽  
ALVARO VALENCIA

Fluid-mechanical and morphological parameters are recognized as major factors in the rupture risk of human aneurysms. On the other hand, it is well known that a lot of machine learning tools are available to study a variety of problems in many fields. In this work, fluid–structure interaction (FSI) simulations were carried out to examine a database of 60 real saccular cerebral aneurysms (30 ruptured and 30 unruptured) using reconstructions by angiography images. With the results of the simulations and geometric analyses, we studied the analysis of variance (ANOVA) statistic test in many variables and we obtained that aspect ratio (AR), bottleneck factor (BNF), maximum height of the aneurysms (MH), relative residence time (RRT), Womersley number (WN) and Von-Mises strain (VMS) are statically significant and good predictors for the models. In consequence, these ones were used in five machine learning algorithms to determine the rupture risk predictions of the aneurysms, where the adaptative boosting (AdaBoost) was calculated with the highest area under the curve (AUC) in the receiver operating characteristic (ROC) curve (AUC 0.944).


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 2581-2581 ◽  
Author(s):  
Paul Johannet ◽  
Nicolas Coudray ◽  
George Jour ◽  
Douglas MacArthur Donnelly ◽  
Shirin Bajaj ◽  
...  

2581 Background: There is growing interest in optimizing patient selection for treatment with immune checkpoint inhibitors (ICIs). We postulate that phenotypic features present in metastatic melanoma tissue reflect the biology of tumor cells, immune cells, and stromal tissue, and hence can provide predictive information about tumor behavior. Here, we test the hypothesis that machine learning algorithms can be trained to predict the likelihood of response and/or toxicity to ICIs. Methods: We examined 124 stage III/IV melanoma patients who received anti-CTLA-4 (n = 81), anti-PD-1 (n = 25), or combination (n = 18) therapy as first line. The tissue analyzed was resected before treatment with ICIs. In total, 340 H&E slides were digitized and annotated for three regions of interest: tumor, lymphocytes, and stroma. The slides were then partitioned into training (n = 285), validation (n = 26), and test (n = 29) sets. Slides were tiled (299x299 pixels) at 20X magnification. We trained a deep convolutional neural network (DCNN) to automatically segment the images into each of the three regions and then deconstruct images into their component features to detect non-obvious patterns with objectivity and reproducibility. We then trained the DCNN for two classifications: 1) complete/partial response versus progression of disease (POD), and 2) severe versus no immune-related adverse events (irAEs). Predictive accuracy was estimated by area under the curve (AUC) of receiver operating characteristics (ROC). Results: The DCNN identified tumor within LN with AUC 0.987 and within ST with AUC 0.943. Prediction of POD based on ST-only always performed better than prediction based on LN-only (AUC 0.84 compared to 0.61, respectively). The DCNN had an average AUC 0.69 when analyzing only tumor regions from both LN and ST data sets and AUC 0.68 when analyzing tumor and lymphocyte regions. Severe irAEs were predicted with limited accuracy (AUC 0.53). Conclusions: Our results support the potential application of machine learning on pre-treatment histologic slides to predict response to ICIs. It also revealed their limited value in predicting toxicity. We are currently investigating whether the predictive capability of the algorithm can be further improved by incorporating additional immunologic biomarkers.


2020 ◽  
Author(s):  
Nida Fatima

Abstract Background: Preoperative prognostication of clinical and surgical outcome in patients with neurosurgical diseases can improve the risk stratification, thus can guide in implementing targeted treatment to minimize these events. Therefore, the author aims to highlight the development and validation of predictive models determining neurosurgical outcomes through machine learning algorithms using logistic regression.Methods: Logistic regression (enter, backward and forward) and least absolute shrinkage and selection operator (LASSO) method for selection of variables from selected database can eventually lead to multiple candidate models. The final model with a set of predictive variables must be selected based upon the clinical knowledge and numerical results.Results: The predictive model which performed best on the discrimination, calibration, Brier score and decision curve analysis must be selected to develop machine learning algorithms. Logistic regression should be compared with the LASSO model. Usually for the big databases, the predictive model selected through logistic regression gives higher Area Under the Curve (AUC) than those with LASSO model. The predictive probability derived from the best model could be uploaded to an open access web application which is easily deployed by the patients and surgeons to make a risk assessment world-wide.Conclusions: Machine learning algorithms provide promising results for the prediction of outcomes following cranial and spinal surgery. These algorithms can provide useful factors for patient-counselling, assessing peri-operative risk factors, and predicting post-operative outcomes after neurosurgery.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bum-Joo Cho ◽  
Kyoung Min Kim ◽  
Sanchir-Erdene Bilegsaikhan ◽  
Yong Joon Suh

Abstract Febrile neutropenia (FN) is one of the most concerning complications of chemotherapy, and its prediction remains difficult. This study aimed to reveal the risk factors for and build the prediction models of FN using machine learning algorithms. Medical records of hospitalized patients who underwent chemotherapy after surgery for breast cancer between May 2002 and September 2018 were selectively reviewed for development of models. Demographic, clinical, pathological, and therapeutic data were analyzed to identify risk factors for FN. Using machine learning algorithms, prediction models were developed and evaluated for performance. Of 933 selected inpatients with a mean age of 51.8 ± 10.7 years, FN developed in 409 (43.8%) patients. There was a significant difference in FN incidence according to age, staging, taxane-based regimen, and blood count 5 days after chemotherapy. The area under the curve (AUC) built based on these findings was 0.870 on the basis of logistic regression. The AUC improved by machine learning was 0.908. Machine learning improves the prediction of FN in patients undergoing chemotherapy for breast cancer compared to the conventional statistical model. In these high-risk patients, primary prophylaxis with granulocyte colony-stimulating factor could be considered.


Sign in / Sign up

Export Citation Format

Share Document