scholarly journals Autophagy Activation Induces Resistance to FLT3 Inhibitors in Acute Myeloid Leukemia with FLT3-ITD Mutation

Author(s):  
Dan Xu ◽  
Zhao Yin ◽  
Ying Yang ◽  
Yishan Chen ◽  
Changfen Huang ◽  
...  

Abstract Background: Autophagy plays a critical role in drug resistance in acute myeloid leukemia (AML), including the subtype with FLT3-ITD mutation. Yet how autophagy is activated and mediates resistance to FLT3 inhibitors in FLT3-ITD-positive AML remains unsure. Methods: We detected the alteration of autophagy in FLT3-ITD-positive leukemic cells after versus before acquired resistance to FLT3 inhibitors; tested the stimulative effect of acquired D835Y mutation and bone marrow micro-environment (BME) on autophagy; explored the mechanism of autophagy mediating FLT3 inhibitor resistance. Results: Sorafenib-resistant cells markedly overexpressed autophagy in comparison with sorafenib-sensitive cells or the cells before sorafenib treatment. Both acquired D835Y mutation and BME activated cytoprotective autophagy to induce FLT3 inhibitor resistance. Autophagy activation decreased the suppression efficacy of FLT3 inhibitors on FLT3 downstream signaling and then weakened their anti-leukemia effect. Inhibition of autophagy with CQ significantly enhanced the suppressive effect of FLT3 inhibitor on FLT3 downstream signaling, in the end overcame FLT3 inhibitor resistance. Conclusions: Autophagy might be stimulated by acquired mutation or BME, and bypass activate FLT3 downstream signaling to mediate FLT3 inhibitor resistance in FLT3-ITD-positive AML. Targeting autophagy could be a promising strategy to overcome resistance.

2016 ◽  
Vol 113 (43) ◽  
pp. E6669-E6678 ◽  
Author(s):  
Mark A. Gregory ◽  
Angelo D’Alessandro ◽  
Francesca Alvarez-Calderon ◽  
Jihye Kim ◽  
Travis Nemkov ◽  
...  

Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are common in acute myeloid leukemia (AML) and drive leukemic cell growth and survival. Although FLT3 inhibitors have shown considerable promise for the treatment of AML, they ultimately fail to achieve long-term remissions as monotherapy. To identify genetic targets that can sensitize AML cells to killing by FLT3 inhibitors, we performed a genome-wide RNA interference (RNAi)-based screen that identified ATM (ataxia telangiectasia mutated) as being synthetic lethal with FLT3 inhibitor therapy. We found that inactivating ATM or its downstream effector glucose 6-phosphate dehydrogenase (G6PD) sensitizes AML cells to FLT3 inhibitor induced apoptosis. Examination of the cellular metabolome showed that FLT3 inhibition by itself causes profound alterations in central carbon metabolism, resulting in impaired production of the antioxidant factor glutathione, which was further impaired by ATM or G6PD inactivation. Moreover, FLT3 inhibition elicited severe mitochondrial oxidative stress that is causative in apoptosis and is exacerbated by ATM/G6PD inhibition. The use of an agent that intensifies mitochondrial oxidative stress in combination with a FLT3 inhibitor augmented elimination of AML cells in vitro and in vivo, revealing a therapeutic strategy for the improved treatment of FLT3 mutated AML.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3511
Author(s):  
Joseph D. Khoury ◽  
Mehrnoosh Tashakori ◽  
Hong Yang ◽  
Sanam Loghavi ◽  
Ying Wang ◽  
...  

RAF molecules play a critical role in cell signaling through their integral impact on the RAS/RAF/MEK/ERK signaling pathway, which is constitutively activated in a sizeable subset of acute myeloid leukemia (AML) patients. We evaluated the impact of pan-RAF inhibition using LY3009120 in AML cells harboring mutations upstream and downstream of RAF. LY3009120 had anti-proliferative and pro-apoptotic effects and suppressed pERK1/2 levels in leukemic cells with RAS and FLT3 mutations. Using reverse protein phase array analysis, we identified reductions in the expression/activation of cell signaling components downstream of RAF (activated p38) and cell cycle regulators (Wee1/cyclin B1, Cdc2/Cdk1, activated Rb, etc.). Notably, LY3009120 potentiated the effect of Ara-C on AML cells and overcame bone marrow mesenchymal stromal cell-mediated chemoresistance, with RAS-mutated cells showing a notable reduction in pAKT (Ser473). Furthermore, the combination of LY3009120 and sorafenib resulted in significantly higher levels of apoptosis in AML cells with heterozygous and hemizygous FLT3 mutations. In conclusion, pan-RAF inhibition in AML using LY3009120 results in anti-leukemic activity, and combination with Ara-C or sorafenib potentiates its effect.


2019 ◽  
Vol 51 (5) ◽  
pp. 478-483
Author(s):  
Cade D Arries ◽  
Sophia L Yohe

Abstract Background FMS-like tyrosine kinase-3 (FLT3-ITD) mutations are some of the most common mutations in acute myeloid leukemia (AML), and patient outcomes have improved since the advent of tyrosine kinase inhibitors. First, granulocytic differentiation was described in FLT3-positive AML treated with FLT3 inhibitors, and more recently, monocytic differentiation was reported. Methods Two patients with myelomonocytic cells in their bone marrow were identified during routine follow-up after AML treatment that included FLT3 inhibitors. The bone marrow study was done as standard of care. Results Both patients had FLT3-ITD+ AML and showed an atypical maturing monocytic cell population and a decrease in the leukemic blast cell population after FLT3 inhibitor therapy. Concurrent genetic testing revealed persistent genetic abnormalities. Conclusions These cases illustrate monocytic maturation in FLT3+ AML after FLT3 inhibitor treatment. It is critical for pathologists and clinicians to be aware of the differentiation phenomenon, as these patients have persistent molecular abnormalities despite response to treatment and normalization of blast counts.


Blood ◽  
2011 ◽  
Vol 117 (12) ◽  
pp. 3286-3293 ◽  
Author(s):  
Takashi Sato ◽  
Xiaochuan Yang ◽  
Steven Knapper ◽  
Paul White ◽  
B. Douglas Smith ◽  
...  

AbstractWe examined in vivo FLT3 inhibition in acute myeloid leukemia patients treated with chemotherapy followed by the FLT3 inhibitor lestaurtinib, comparing newly diagnosed acute myeloid leukemia patients with relapsed patients. Because we noted that in vivo FLT3 inhibition by lestaurtinib was less effective in the relapsed patients compared with the newly diagnosed patients, we investigated whether plasma FLT3 ligand (FL) levels could influence the efficacy of FLT3 inhibition in these patients. After intensive chemotherapy, FL levels rose to a mean of 488 pg/mL on day 15 of induction therapy for newly diagnosed patients, whereas they rose to a mean of 1148 pg/mL in the relapsed patients. FL levels rose even higher with successive courses of chemotherapy, to a mean of 3251 pg/mL after the fourth course. In vitro, exogenous FL at concentrations similar to those observed in patients mitigated FLT3 inhibition and cytotoxicity for each of 5 different FLT3 inhibitors (lestaurtinib, midostaurin, sorafenib, KW-2449, and AC220). The dramatic increase in FL level after chemotherapy represents a possible obstacle to inhibiting FLT3 in this clinical setting. These findings could have important implications regarding the design and outcome of trials of FLT3 inhibitors and furthermore suggest a rationale for targeting FL as a therapeutic strategy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3333-3333
Author(s):  
Han Zhong Pei ◽  
Xiaomei Zhuang ◽  
Ming Yang ◽  
Yao Guo ◽  
Zhiguang Chang ◽  
...  

Abstract Frequently mutated in Acute myeloid leukemia (AML), FLT3 is considered as one of the favorable targets for treatment. The FLT3 internal tandem duplication (ITD) mutation enhances kinase activity and causes hyperactivation of downstream signal transduction. Several small molecule FLT3 inhibitors have developed, but their clinical efficacy is limited due to generation of drug resistance. In this study, we define a new mechanism of drug resistance toward tyrosine kinase inhibitors (TKIs). Initially, we found a rapid decrease in the protein level of tumor suppressor p53 in FLT3-ITD-positive MV4-11 and MOLM13 cells and peripheral blood mononuclear cells (PBMCs) from FLT3-ITD AML patients upon treatment with TKIs including sorafenib, sunitinib and quizartinib. The decrease is not caused by changes in mRNA expression as revealed by qPCR analyses but rather by accelerated protease degradation because the p53 protein was stabilized by proteasome inhibitor MG132. Furthermore, treatment of cells with RG7388, a potent disruptor of p53 and MDM2 interaction, prevented the TKI-induced p53 loss. Since MDM2 is the most important E3 ligase responsible for ubiquitination of p53, the data suggest that TKIs may lead to the degradation of p53 by promoting ubiquitination. Indeed, ubiquitination assays verified that TKIs promoted K48 poly-ubiquitination of p53. Previous studies have demonstrated that activations of FLT3 downstream signaling components such as ERKs and Akt reduce p53 protein stability through ubiquitination by activating MDM2. It is somewhat unexpected that inhibition of FLT3-ITD and its downstream signaling pathways also resulted in decreased p53 stability due to increased ubiquitination. We treated FLT3-ITD-containing cells with specific ERK, AKT and STAT5 inhibitors. Interestingly, while inhibition of ERKs and AKT had no significant effect on the stability of p53, STAT5 inhibition resulted in a reduced level of p53 accompanied by increased K48 poly-ubiquitination. We further analyzed the interaction of p53 with MDM2 in AML cells by using immunoprecipitation. The results showed that the p53-MDM2 interaction was significantly enhanced after treatment with TKIs and STAT5 inhibitors, which was diminished in the presence of RG7388. Subcellular fractionation revealed the presence of p53 and STAT5 in both nucleus and cytoplasm. Treatment of cells with TKIs resulted in a decreased level of p53 and STAT5 in the nucleus, and immunoprecipitation of nuclear proteins with a p53 antibody revealed a reduced association of p53 with STAT5. Taken together, the data suggest that FLT3 inhibitors inhibited nuclear translocation of STAT5 and reduced its interaction of p53 thereby facilitating p53/MDM2 interaction and subsequent ubiquitination and degradation of p53. This study reveals a novel mechanism by which drug resistance to TKIs may occur and further support the use of MDM2/p53 interaction inhibitors in combination with TKIs for treatment of AML. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (4) ◽  
pp. 868-879 ◽  
Author(s):  
John Anto Pulikkan ◽  
Dmitri Madera ◽  
Liting Xue ◽  
Paul Bradley ◽  
Sean Francis Landrette ◽  
...  

Abstract Oncogenic mutations in components of cytokine signaling pathways elicit ligand-independent activation of downstream signaling, enhancing proliferation and survival in acute myeloid leukemia (AML). The myeloproliferative leukemia virus oncogene, MPL, a homodimeric receptor activated by thrombopoietin (THPO), is mutated in myeloproliferative disorders but rarely in AML. Here we show that wild-type MPL expression is increased in a fraction of human AML samples expressing RUNX1-ETO, a fusion protein created by chromosome translocation t(8;21), and that up-regulation of Mpl expression in mice induces AML when coexpressed with RUNX1-ETO. The leukemic cells are sensitive to THPO, activating survival and proliferative responses. Mpl expression is not regulated by RUNX1-ETO in mouse hematopoietic progenitors or leukemic cells. Moreover, we find that activation of PI3K/AKT but not ERK/MEK pathway is a critical mediator of the MPL-directed antiapoptotic function in leukemic cells. Hence, this study provides evidence that up-regulation of wild-type MPL levels promotes leukemia development and maintenance through activation of the PI3K/AKT axis, and suggests that inhibitors of this axis could be effective for treatment of MPL-positive AML.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. TPS7062-TPS7062
Author(s):  
Farhad Ravandi ◽  
Stephen Anthony Strickland ◽  
Scott R. Solomon ◽  
Aziz Nazha ◽  
Roland B. Walter ◽  
...  

TPS7062 Background: FLT3-ITD is one of the most common genetic lesions in acute myeloid leukemia (AML). PIM kinases are oncogenic FLT3-ITD targets expressed in AML cells and increased PIM kinase expression is found in relapse samples from AML patients treated with FLT3 inhibitors. In addition, inhibition of PIM kinases restores sensitivity to FLT3 inhibitors and dual FLT3/PIM inhibition eradicates FLT3-ITD+ cells including primary AML cells. SEL24/MEN1703, a potent PIM/FLT3 dual inhibitor, demonstrates a significantly broader spectrum of activity in AML cell lines and primary AML blasts, irrespective of FLT3 status, compared to monotherapy with either FLT3 or PIM inhibitors such as quizartinib or AZD1208. Methods: CLI24-001 is a First in Human, open label, non-randomized, multi-center, Phase I/II dose-escalation and cohort expansion study of SEL24/MEN1703 in AML patients (excluding APL) not suitable for chemotherapy. SEL24/MEN1703 is given orally, QD, for 14 days in a 21-day cycle with cycles repeated until disease progression or unacceptable toxicity. Dose escalation follows a 3+3 design to identify the recommended phase 2 dose (RP2D). In the phase 2 part/cohort expansion, subjects will receive SEL24/MEN1703 at the RP2D, to further investigate the safety profile and signs of antileukemic activity. In both study parts, patients are eligible regardless of mutational status and/or prior exposure to FLT3 inhibitors; prior treatment with PIM inhibitors is not allowed. Main inclusion criteria comprise a white blood count (WBC) of ≤30 x 109/L (hydroxyurea/leukoapheresis permitted to lower WBC). Key secondary objectives include pharmacokinetics (PK) and single agent efficacy. The study is enrolling at 5 US sites and will be extended, both in US and EU, in the cohort expansion part. This is the first trial testing a dual PIM/FLT3 inhibitor with the potential to be active in AML regardless of FLT3 status andwith a potential to overcome FLT3 inhibitor resistance. (Sci Adv. 2015;1:e1500221; Oncotarget. 2018 Mar 30;9(24):16917-16931) Clinical trial information: NCT03008187.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2597-2597
Author(s):  
Kensuke Kojima ◽  
Marina Konopleva ◽  
Twee Tsao ◽  
Michael Andreeff ◽  
Hiroshi Ishida ◽  
...  

Abstract Abstract 2597 Poster Board II-573 Introduction: Activating mutations of the Fms-like tyrosine kinase-3 gene (FLT3) occur in approximately 30–40% of acute myeloid leukemia (AML) patients. FLT3 mutations confer numerous oncogenic properties, including dysregulated proliferation, resistance to apoptosis and a block in differentiation. FLT3 mutations result in abnormal activation of the downstream pathways, including signal transducer and activator of transcription 5 (STAT5), mitogen-activated protein kinase kinase (Mek)/extracellular signal–regulated kinase (Erk) and phosphatidylinositol-3 kinase (PI3K)/Akt. Activation of these downstream effectors has been thought to allow leukemia cells to evade apoptosis. Targeting of FLT3 mutations is a promising approach to overcome the dismal prognosis of acute myeloid leukemia (AML) with activating FLT3 mutations. Current trials are combining FLT3 inhibitors with p53-activating conventional chemotherapy. The mechanisms of cytotoxicity of FLT3 inhibitors are poorly understood. We investigated the interaction of FLT3 and p53 pathways after their simultaneous blockade using the selective FLT3 inhibitor FI-700 and the MDM2 inhibitor Nutlin-3 in AML. Results: FI-700 induced G1-phase cell cycle arrest and apoptosis as evidenced by increased sub-G1 DNA content and phosphatidylserine externalization in FLT3/ITD MOLM-13 (FLT3-ITD, wild-type (wt)-p53) and MV4-11NR (FLT3-ITD, mutated-p53) AML cells. FI-700 did not affect cell cycle distribution patterns nor did it induce apoptosis in FLT3/WT OCI-AML-3 (FLT3/WT, wt-p53) and HL-60 (FLT3/WT, del (del)-p53). Wt-p53 MOLM-13 and OCI-AML-3 cells were susceptible to Nutlin-induced apoptosis. FI-700 augmented Nutlin-induced Bax activation, mitochondrial membrane potential (MMP) loss, caspase-3 activation and phosphatidylserine externalization in MOLM-13 cells. FI-700 rapidly reduced Mcl-1 levels in FLT3/ITD cells, mainly by enhancing proteasomal Mcl-1 degradation. Levels of other Bcl-2 family proteins examined did not change significantly. Mcl-1 levels were only modestly reduced upon Nutlin treatment. The FI-700/Nutlin-3 combination profoundly reduced Mcl-1 levels. Immunoprecipitation/ immunoblotting results suggested that the drug combination results in a profound decrease in Mcl-1-bound Bim. FI-700 enhanced doxorubicin-induced apoptosis in FLT3/ITD MOLM-13 and MV4-11NR cells, suggesting that FI-700 can enhance both the p53-dependent and the p53-independent apoptotic effects of doxorubicin. Finally, cooperative apoptotic effects of FI-700/Nutlin-3 were seen in primary AML cells with FLT3/ITD. Conclusion: FLT3 inhibition by FI-700 immediately reduces anti-apoptotic Mcl-1 levels and enhances Nutlin-induced p53-mediated mitochondrial apoptosis in FLT3/ITD-expressing AML cells via the Mcl-1/Noxa axis. FLT3 inhibition, in combination with p53-inducing agents, might represent a potential therapeutic approach in AML with FLT3/ITD. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1276-1276
Author(s):  
Mario Scarpa ◽  
Prerna Singh ◽  
Shivani Kapoor ◽  
Jonelle K. Lee ◽  
Sandrine Niyongere ◽  
...  

Introduction fms-like tyrosine like kinase 3 internal tandem duplication (FLT3-ITD), present in acute myeloid leukemia (AML) cells of 30% of patients, results in constitutive and aberrant FLT3 signaling and, clinically, short disease-free survival. Efficacy of FLT3 inhibitors is limited and transient, but may be enhanced by dual targeting of FLT3-ITD signaling pathways. The tumor suppressor protein phosphatase 2A (PP2A) is inhibited in cells with FLT3-ITD. The oncogenic serine/threonine kinase Pim-1 is transcriptionally upregulated and also stabilized by PP2A inhibition in cells with FLT3-ITD. Pim-1 contributes directly to FLT3-ITD proliferative and anti-apoptotic effects, and also phosphorylates and stabilizes FLT3-ITD in a positive feedback loop. Moreover FLT3-ITD, PP2A and Pim-1 all regulate the transcription factor c-Myc. PP2A-activating drugs enhance efficacy of FLT3 inhibitors. We sought to identify mechanisms underlying the efficacy of this combination. Methods Ba/F3-ITD and MV4-11 cells, with FLT3-ITD, and blasts from patients with AML with FLT3-ITD were cultured with the FLT3 inhibitors gilteritinib (15 nM) or quizartinib (1 nM) and/or the PP2A-activating drugs FTY720 (2-4 µM) or DT-061 (10 µM), or with DMSO control. Pim-1, c-Myc, p-AKT (S473 and T308) and AKT protein expression was measured by immunoblotting, along with p-STAT5 (Y694), STAT5, p-PP2A (Y307) and PP2A expression. To study post-translational regulation, cells were cultured with cycloheximide (100 µg/mL) with and without the proteasome inhibitor MG-132 (20 µM). Ubiquitinated c-Myc was measured by co-immunoprecipitation and immunoblotting with c-Myc and ubiquitin antibodies. Ba/F3-ITD cells were stably transfected with estrogen receptor (ER)-c-Myc, kinase-dead Pim-1 or myristoylated AKT plasmids or corresponding empty vectors. Apoptosis was detected by Annexin V and propidium iodine staining, measured by flow cytometry. Cells were also cultured with the pan-Pim kinase inhibitor AZD1208 (1 µM), the Myc inhibitor 10058-F4 (100 µM) or the pan-AKT inhibitor MK-2206 (5 µM). Results Concurrent treatment of Ba/F3-ITD and MV4-11 cells and primary AML cells with FLT3-ITD with a FLT3 inhibitor (gilteritinib or quizartinib) and a PP2A-activating drug (FTY720 or DT-061) decreased growth and increased apoptosis induction, relative to treatment with single drugs. Concurrent FLT3 inhibitor and PP2A-activating drug treatment decreased expression of both Pim-1 and c-Myc protein. Concurrent treatment decreased Pim-1 half-life from 15 to 5 minutes, and c-Myc half-life from 30 to 5 minutes, while half-lives were restored by concurrent treatment with the proteasome inhibitor MG-132. Concurrent treatment was also shown to increase c-Myc ubiquitination. Effects of concurrent treatment on Pim-1 and c-Myc were independent, as transfection with kinase-dead Pim-1 or treatment with Pim inhibitor AZD1208 did not alter c-Myc downregulation, and c-Myc overexpression or treatment with Myc inhibitor 10058-F4 did not alter Pim-1 downregulation. Concurrent treatment with FLT3 inhibitor and PP2A-activating drug did not alter expression of c-Myc deubiquitinases, but rapidly decreased AKT S473 and T308 phosphorylation. FLT3 inhibitor and PP2A activator co-treatment did not induce downregulation or increased turnover of Pim-1 and c-Myc protein or apoptosis in cells with constitutive AKT activation caused by transfection of myristoylated AKT. Moreover, AKT inhibition downregulated Pim-1 and c-Myc protein expression, decreased Pim-1 and c-Myc protein half-lives from 15 to 5 minutes and 30 to 10 minutes, respectively, and induced apoptosis of cells with FLT3-ITD, replicating the effects of FLT3 inhibitor and PP2A activator co-treatment. Conclusion PP2A activators enhance the efficacy of FLT3 inhibitors in AML cells with FLT3-ITD through AKT inactivation-dependent increased Pim-1 and c-Myc proteasomal degradation, which is a novel mechanism. The data support further preclinical and clinical testing of this dual targeting approach to treatment of AML with FLT3-ITD. Disclosures Baer: Takeda: Research Funding; Incyte: Research Funding; Kite: Research Funding; Forma: Research Funding; AI Therapeutics: Research Funding; Abbvie: Research Funding; Astellas: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document