scholarly journals In Vitro Spectroscopy-Based Profiling of Urothelial Carcinoma: A Fourier Transform Infrared and Raman Imaging Study

Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Monika Kujdowicz ◽  
Wojciech Placha ◽  
Brygida Mech ◽  
Karolina Chrabaszcz ◽  
Krzysztof Okoń ◽  
...  

Markers of bladder cancer cells remain elusive, which is a major cause of the low recognition of this malignant neoplasm and its recurrence. This implies an urgent need for additional diagnostic tools which are based on the identification of the chemism of bladder cancer. In this study, we employed label-free techniques of molecular imaging—Fourier Transform Infrared and Raman spectroscopic imaging—to investigate bladder cancer cell lines of various invasiveness (T24a, T24p, HT-1376, and J82). The urothelial HCV-29 cell line was the healthy control. Specific biomolecules discriminated spatial distribution of the nucleus and cytoplasm and indicated the presence of lipid bodies and graininess in some cell lines. The most prominent discriminators are the total content of lipids and sugar moieties as well as the presence of glycogen and other carbohydrates, un/saturated lipids, cytochromes, and a level of S-S bridges in proteins. The combination of the obtained hyperspectral database and chemometric methods showed a clear differentiation of each cell line at the level of the nuclei and cytoplasm and pointed out spectral signals which differentiated bladder cancer cells. Registered spectral markers correlated with biochemical composition changes can be associated with pathogenesis and potentially used for the diagnosis of bladder cancer and response to experimental therapies.

BMC Urology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Aldhabi Mokhtar ◽  
Chuize Kong ◽  
Zhe Zhang ◽  
Yan Du

Abstract Objectives The aim of this study was to investigate the effect of lncRNA-SNHG15 in bladder carcinoma using cell lines experiments and the relationship between clinical characteristics and lncRNA-SNHG15 expression was analyzed. Methods Bladder cancer tissues and near-cancer tissues were collected. The real-time PCR (RT-PCR) was used to detect the expression of lncRNA-SNHG15 in tissues and cell lines. The expression of lncRNA-SNHG15 was downregulated by interference (siRNA), as detected by RT-PCR, that was used to determine the efficiency of the interference. CCK-8 and Transwell assays were used to evaluate the effect of lncRNA-SNHG15 on the proliferation and invasion capability of bladder cancer cells. The t-test was used for Statistical analyses, which were carried out using the Statistical Graph pad 8.0.1.224 software. Result The expression of lncRNA-SNHG15 was up regulated in 5637, UMUC3 and T24 cell lines compared with corresponding normal controls (P < 0.05). Up regulation was positively related to tumor stage (P = 0.015). And tumor size (P = 0.0465). The down-regulation of lncRNA-SNHG15 with siRNA significantly inhibited UMUC3 and T24 cell proliferation and invasion. Conclusion This study showed that lncRNA-SNHG15 is overexpressed in bladder cancer tissues and (5637, UMUC3 T24) cell lines. Up regulation was positively related to tumor stage (P = 0.015), and tumor size (P = 0.0465). Down-regulation of lncRNA-SNHG15 by siRNA significantly inhibited UMUC3 and T24 cell proliferation and invasion, indicating a potential molecular target for future tumor targeted therapy.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Frederik Roos ◽  
Katherina Binder ◽  
Jochen Rutz ◽  
Sebastian Maxeiner ◽  
August Bernd ◽  
...  

The natural compound curcumin exerts antitumor properties in vitro, but its clinical application is limited due to low bioavailability. Light exposure in skin and skin cancer cells has been shown to improve curcumin bioavailability; thus, the object of this investigation was to determine whether light exposure might also enhance curcumin efficacy in bladder cancer cell lines. RT112, UMUC3, and TCCSUP cells were preincubated with low curcumin concentrations (0.1-0.4μg/ml) and then exposed to 1.65 J/cm2visible light for 5 min. Cell growth, cell proliferation, apoptosis, cell cycle progression, and cell cycle regulating proteins along with acetylation of histone H3 and H4 were investigated. Though curcumin alone did not alter cell proliferation or apoptosis, tumor cell growth and proliferation were strongly blocked when curcumin was combined with visible light. Curcumin-light caused the bladder cancer cells to become arrested in different cell phases: G0/G1 for RT112, G2/M for TCCSUP, and G2/M- and S-phase for UMUC3. Proteins of the Cdk-cyclin axis were diminished in RT112 after application of 0.1 and 0.4μg/ml curcumin. Cell cycling proteins were upregulated in TCCSUP and UMUC3 in the presence of 0.1μg/ml curcumin-light but were partially downregulated with 0.4μg/ml curcumin. 0.4μg/ml (but not 0.1μg/ml) curcumin-light also evoked late apoptosis in TCCSUP and UMUC3 cells. H3 and H4 acetylation was found in UMUC3 cells treated with 0.4μg/ml curcumin alone or with 0.1μg/ml curcumin-light, pointing to an epigenetic mechanism. Light exposure enhanced the antitumor potential of curcumin on bladder cancer cells but by different molecular action modes in the different cell lines. Further studies are necessary to evaluate whether intravesical curcumin application, combined with visible light, might become an innovative tool in combating bladder cancer.


2019 ◽  
Vol 74 (2) ◽  
pp. 178-186 ◽  
Author(s):  
Abigail V. Rutter ◽  
Jamie Crees ◽  
Helen Wright ◽  
Marko Raseta ◽  
Daniel G. van Pittius ◽  
...  

The rising incidence of cancer worldwide is causing an increase in the workload in pathology departments. This, coupled with advanced analysis methodologies, supports a developing need for techniques that could identify the presence of cancer cells in cytology and tissue samples in an objective, fast, and automated way. Fourier transform infrared (FT-IR) microspectroscopy can identify cancer cells in such samples objectively. Thus, it has the potential to become another tool to help pathologists in their daily work. However, one of the main drawbacks is the use of glass substrates by pathologists. Glass absorbs IR radiation, removing important mid-IR spectral data in the fingerprint region (1800 cm−1 to 900 cm−1). In this work, we hypothesized that, using glass coverslips of differing compositions, some regions within the fingerprint area could still be analyzed. We studied three different types of cells (peripheral blood mononuclear cells, a leukemia cell line, and a lung cancer cell line) and lymph node tissue placed on four different types of glass coverslips. The data presented here show that depending of the type of glass substrate used, information within the fingerprint region down to 1350 cm−1 can be obtained. Furthermore, using principal component analysis, separation between the different cell lines was possible using both the lipid region and the fingerprint region between 1800 cm−1 and 1350 cm−1. This work represents a further step towards the application of FT-IR microspectroscopy in histopathology departments.


2021 ◽  
Author(s):  
Umar Ahmad ◽  
Arcana Thirumorthy ◽  
Syahril Abdullah ◽  
De Ming Chau ◽  
Suet Lin Chia ◽  
...  

Abstract Background Newcastle disease virus (NDV) has been identified as an attractive virotherapeutic agent that targets various type of human cancers while leaving normal cells unharmed. Wild-type NDV strain AF2240 has been found to persistently infect a subpopulation of cancer cells in vitro, making the cells less susceptible to NDV-mediated oncolysis. It is proposed that transcriptome profiling of NDV persistently infected bladder cancer cell lines will provide insights to understand such occurrence by identifying specific pathways associated with NDV persistent infection due to transcriptomic dysregulation. Results Transcriptome profiling revealed a total of 63 and 134 differentially expressed genes (DEGs) from NDV persistently infected TCCSUPPi and EJ28Pi bladder cancer cells relative to their uninfected controls, respectively. Of the 63 DEGs identified for TCCSUPPi cells, 25 DEGs were upregulated (log2 fold-change ≥ 0) and 38 DEGs were downregulated (log2 fold-change ≤ 0). These genes were significantly enriched in the molecular function of calcium binding (GO:0005509) and DNA-binding transcription repressor activity, RNA polymerase II-specific (GO:0001227) and the enriched important upregulated pathways were mainly heme metabolism, TGF-beta signaling and spermatogenesis. As for EJ28Pi, 55 DEGs were upregulated (log2 fold-change ≥ 0) and 79 DEGs were downregulated (log2 fold-change ≤ 0). These DEGs resulted in significantly enriched molecular function such as protein domain specific binding (GO:0019904) and RNA polymerase II regulatory region sequence-specific DNA binding (GO:0000977). The enriched important upregulated pathways were allograft rejection, KRAS signaling up and interferon gamma response. Other important pathways that were downregulated in both the NDV-persistently infected cell lines were angiogenesis, apoptosis, and xenobiotic metabolism. Conclusion The transcriptome profiles (RNA-Seq) of these cell lines suggest that evasion of apoptosis and increase in TGF-beta signaling and interferon gamma response activities are crucial for establishment of NDV persistent infection in bladder cancer cells. Findings from this study provide the molecular basis that warrant further study on how bladder cancer cells acquired NDV persistent infection. Resolving the mechanism of persistent infection will facilitate the application of NDV for more effective treatment of bladder cancer.


2020 ◽  
Author(s):  
Prasanna Vasudevan Iyengar ◽  
Dieuwke Louise Marvin ◽  
Dilraj Lama ◽  
Tuan Zea Tan ◽  
Sudha Suriyamurthy ◽  
...  

AbstractBladder cancer is one of the most prevalent cancer types in the world, frequently exhibiting invasion and metastasis and therefore associated with poor prognosis. It is a progressive disease with high recurrence rates even after surgery, which calls for the urgent need for early intervention and diagnosis. The E3 ubiquitin ligase TNF Receptor Associated Factor 4 (TRAF4) has been largely implicated as a tumour-promoting element in a wide range of cancers. Over-expression and amplification of this gene product has been a common observation in breast and other metastatic tumours. In contrast, we observed that expression of TRAF4 negatively correlated with overall patient survival. Moreover, its expression was repressed at epigenetic levels in aggressive bladder cancer cells. We also describe an ERK kinase phosphorylation site on TRAF4 that inhibits its stability and localization to plasma membrane in such cells. Furthermore, knockdown of TRAF4 in epithelial bladder cancer cell lines leads to gain of mesenchymal genes and a loss of epithelial integrity. Reciprocally, stable over-expression of TRAF4 in mesenchymal cells leads to decreased migratory and invasive properties. Transcriptomic analysis upon TRAF4 mis-expression in bladder cancer cell lines revealed that higher TRAF4 expression enhanced BMP/SMAD and dampened NF-κB signalling pathways. Importantly, this notion was confirmed in bladder cancer patient material. Mechanistically, we showed that TRAF4 targets the E3 ubiquitin ligase SMURF1, a negative regulator of BMP/SMAD signalling, for proteasomal degradation in bladder cancer cells. We show that genetic and pharmacological inhibition of SMURF1 or its function inhibited migration of aggressive (mesenchymal) bladder cancer cells.


2020 ◽  
Vol 21 (8) ◽  
pp. 2825 ◽  
Author(s):  
Hyera Kim ◽  
Su Jin Lee ◽  
In Kyoung Lee ◽  
Suejean C. Min ◽  
Hyun Hwan Sung ◽  
...  

Despite comprehensive genomic analyses, no targeted therapies are approved for bladder cancer. Here, we investigate whether a single and combination therapy with targeted agents exert antitumor effects on bladder cancer cells through genomic alterations using a three-dimensional (3D) high-throughput screening (HTS) platform. Seven human bladder cancer cell lines were used to screen 24 targeted agents. The effects of 24 targeted agents were dramatically different according to the genomic alterations of bladder cancer cells. BEZ235 (dual phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor) showed antitumor effects against most cell lines, while AZD2014 (mTOR inhibitor) had an IC50 value lower than 2 μM in 5637, J82, and RT4 cell lines. AZD5363 (protein kinase B (AKT) inhibitor) exerted antitumor effects on 5637, J82, and 253J-BV cells. J82 cells (PI3KCA and mTOR mutations) were sensitive to AZD5363, AZD2014, and BEZ235 alone or in AZD5363/AZD2014 and AZD5363/BEZ235 combinations. Although all single drugs suppressed cell proliferation, the combination of drugs exhibited synergistic effects on cell viability and colony formation. The synergistic effects of the combination therapy on the PI3K/Akt/mTOR pathway, apoptosis, and EMT were evident in Western blotting. Thus, the 3D culture-based HTS platform could serve as a useful preclinical tool to evaluate various drug combinations.


2013 ◽  
Vol 45 ◽  
pp. 152-157 ◽  
Author(s):  
Kyung Woo Kim ◽  
Yong Shin ◽  
Agampodi Promoda Perera ◽  
Qing Liu ◽  
Jack Sheng Kee ◽  
...  

2020 ◽  
Vol 4 (4) ◽  
pp. 207-215
Author(s):  
Meltem Demirel Kars ◽  
Gamze Yıldırım ◽  
Yasemin Gündoğdu ◽  
Fatmanur Gönce ◽  
Esra Ayan ◽  
...  

AbstractPhotodynamic therapy (PDT) is a photo chemotherapeutic strategy that is the application of photosensitizing agent and light on disease or tumor site. The aim of this study is to confirm the feasibility for femtosecond (fs) laser for aminolevulinate (ALA) mediated PDT on skin, breast and bladder cancer cells. Also the remarkable aspects of ALA mediated and laser induced PDT with respect to other literally known applications were investigated.Metastatic melanoma cells SK-MEL30, mammary epithelial carcinoma cells MCF-7 and bladder cancer cells UMUC-3 were treated with ALA and then the cells were irradiated by fs laser at thirty wavelengths in between 230 and 800 nm for 30s and 60s. Anti-cancer effects of ALA phototherapy on different cancer cell lines were determined. Protoporphyrin IX (PpIX) accumulation was visualized by confocal microscopy. The effective PDT wavelengths were applied to evaluate the degree of apoptosis and necrosis in cells.The viability tests demonstrated that wavelengths 400-440 nm and 600-630 nm were found to decrease the viability on three model cell lines. PDT at 630 nm exerted cell death by necrosis and apoptosis after 30 s and 60 s periods.This paper confirms that ALA and femtosecond laser mediated PDT may be used together as therapeutic and diagnostic method to target breast, skin and urinary bladder cancer cells. The use of fs laser allows the flexibility for optimization of wavelength for photosensitizing agents.


2021 ◽  
Author(s):  
Yuki Matsuoka ◽  
Rikiya Taoka ◽  
Yoichiro Tohi ◽  
Zhang Xia ◽  
Mikio Sugimoto

Abstract Background:Bladder cancer is a major health concern worldwide. The conventional intravesical Bacillus Calmette–Guérin therapy has certain shortcomings; thereby, demanding novel alternatives. Although sterile water is a probable agent for such novel intravesical therapies, bladder cancer cell lines differ in their sensitivity to hypotonic shock due to sterile water. Therefore, we aimed to investigate whether Cl- channel blockers enhance the cytocidal effect of hypotonic shock on bladder cancer cells resistant to sterile water.Methods:Bladder cancer cell lines of varying grades (RT112, T24, and J82) were exposed to sterile water, and morphological changes were closely observed using microscopy. Sterile water-induced changes in cell membrane integrity and cell viability were analyzed to determine the effects of hypotonic shock. These effects were further analyzed using a Cl- channel blocker.Results:T24 and J82 cells started swelling immediately upon exposure to sterile water and ruptured within 10 min. RT112 cells demonstrated limited hypotonic swelling with few cell ruptures. After treatment with the Cl- channel blocker, RT112 cells ruptured faster as compared to that in cells treated with sterile water. The percentages of viable dimethylsulfoxide and 5-nitro-2-(3-phenylpropylamino) benzoic acid -treated (50, 100, 200, and 300 µM) RT112 cells after 10 min of exposure to sterile water were 13.6 % ± 3.4 %, 6.3 % ± 1.2 %, 2.0 % ± 1.1 %, 0.7 % ± 0.7 %, and 0 %, respectively.Conclusions:Taken together, the Cl- channel blockers enhanced the cytocidal effects of hypotonic shock in bladder cancer cells. Intravesical therapy with sterile water after treatment with a Cl- channel blocker represents a potential new adjuvant therapy after TURBT with high efficacy.


Sign in / Sign up

Export Citation Format

Share Document