scholarly journals Identification and Validation of an Immune-Associated RNA-Binding Proteins Signature to Predict Clinical Outcomes and Therapeutic Responses in Glioma Patients

Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1730
Author(s):  
Ruotong Tian ◽  
Yimin Li ◽  
Qian Liu ◽  
Minfeng Shu

The prognosis of patients with glioma is largely related to both the tumor-infiltrating immune cells and the expression of RNA-binding proteins (RBPs) that are able to regulate various pro-inflammatory and oncogenic mediators. However, immune-associated RBPs in glioma remain unexplored. In this study, we captured patient data from The Cancer Genome Atlas (TCGA) and divided them into two immune subtype groups according to the difference in infiltration of immune cells. After differential expression and co-expression analysis, we identified 216 RBPs defined as immune-associated RBPs. After narrowing down processes, eight RBPs were selected out to construct a risk signature that proven to be a novel and independent prognostic factor. The patients were divided into high- and low-risk groups on the basis of risk score. Higher risk scores meant worse overall survival and higher expression of human leukocyte antigen and immune checkpoints such as PD1 and CTLA4. In addition, analyses of pathway enrichment, somatic mutation, copy number variations and immuno-/chemotherapeutic response prediction were performed in high- and low-risk groups and compared with each other. For the first time, we demonstrated a novel signature composed of eight immune-associated RBPs that was valuable in predicting the survival of glioma patients and directing immunotherapy and chemotherapy.

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xiao-fen Bai ◽  
Jing-wen Liu

Colorectal cancer (CRC) is one of the most common malignancies of the digestive system. Recent studies have revealed the importance of RNA-binding proteins (RBPs) in tumorigenesis, but their role in CRC remains unclear. The present study systematically analyzed the relationships between RBPs and CRC using data from The Cancer Genome Atlas. We detected 483 differentially expressed RBPs and identified a series of pathways and processes using GO (Gene Ontology) analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis. Analyzing protein–protein interactions and modules identified the edges and modules of RBPs. Univariate and multivariate Cox regression analyses were then used to construct a prognostic model that included 13 RBPs. Survival analyses indicated that the overall survival (OS) was significantly lower for CRC patients in the high-risk group than for those in the low-risk group, and that high risk scores were associated with poor OS. Finally, we constructed a nomogram that included 13 RBPs for calculating the estimated survival probabilities of CRC patients at 1, 2, and 3 years. Calibration plots indicated good conformity between the predicted and observed outcomes. This study has revealed that the expression of RBPs differs between CRC and normal tissues. A prognostic model based on 13 RBP coding genes has been developed that can provide independent prognoses of CRC.


2020 ◽  
Author(s):  
Xinhong Liu ◽  
Fang Tan ◽  
Xingyao Long ◽  
Ruokun Yi ◽  
Dingyi Yang ◽  
...  

Abstract Background RNA binding proteins (RBPs) play an important role in a variety of cancers. However, the role of RBPs in colorectal adenocarcinoma (COAD) has not been studied. Integrated analysis of RBPs will provide a better understanding of disease genesis and new insights into COAD treatment. Methods The gene expression data and corresponding clinical information for COAD were downloaded from The Cancer Genome Atlas (TCGA) database. Univariate Cox regression analysis was used to screen for RBPs associated with COAD recurrence, and multivariate Cox proportional hazards regression analyses were used to identify genes that were associated with COAD recurrence. A nomogram was constructed to predict the recurrence of COAD, and a receiver operating characteristic (ROC) curve analysis was performed to determine the accuracy of the prediction models. The Human Protein Atlas database was used in prediction models to confirm the expression of key genes in COAD patients. Result A total of 177 differentially expressed RBPs was obtained, comprising 123 upregulated and 54 downregulated. GO and KEGG enrichment analysis showed that the differentially expressed RBPs were mainly related to mRNA metabolism, RNA processing and translation regulation. Seven RBP genes (TDRD6, POP1, TDRD7, PPARGC1A, LIN28B, LRRFIP2 and PNLDC1) were identified as prognosis-associated genes and were used to construct the prognostic model. Conclusion We constructed a COAD prognostic model through bioinformatics analysis, which indicated that prognostic model RBPs have a potential role in the diagnosis and prognosis of COAD. Moreover, the nomogram can effectively predict the 1-year, 3-year, and 5-year survival rate for COAD patients.


2021 ◽  
Author(s):  
Renjie Liu ◽  
Guifu Wang ◽  
Chi Zhang ◽  
Dousheng Bai

Abstract Background: Dysregulation of the balance between proliferation and apoptosis is the basis for human hepatocarcinogenesis. In many malignant tumors, such as hepatocellular carcinoma (HCC), there is a correlation between apoptotic dysregulation and poor prognosis. However, the prognostic values of apoptosis-related genes (ARGs) in HCC have not been elucidated. Methods: To screen for differentially expressed ARGs, the expression levels of 161 ARGs from The Cancer Genome Atlas (TCGA) database(https://cancergenome.nih.gov/) were analyzed. Gene Ontology (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to evaluate the underlying molecular mechanisms of differentially expressed ARGs in HCC. The prognostic values of ARGs were established using Cox regression, and subsequently, a prognostic risk model for scoring patients was developed. Kaplan-Meier (K-M) and receiver operating characteristic (ROC) curves were plotted to determine the prognostic value of the model. Results: Compared to normal tissues, 43 highly up-regulated and 8 down-regulated ARGs in HCC tissues were screened. GO analysis results revealed that these 51 genes are indeed related to the apoptosis function. KEGG analysis revealed that these 51 genes were correlated with MAPK, P53, TNF, and PI3K-AKT signaling pathways, while Cox regression revealed that 5 ARGs (PPP2R5B, SQSTM1, TOP2A, BMF, and LGALS3) were associated with prognosis and were, therefore, obtained to develop the prognostic model. Based on the median risk scores, patients were categorized into high-risk and low-risk groups. Patients in the low-risk groups exhibited significantly elevated two-year or five-year survival probabilities (p < 0.0001). The risk model had a better clinical potency than the other clinical characteristics, with the area under the ROC curve (AUC = 0.741). The prognosis of HCC patients was established from a plotted nomogram. Conclusion: Based on the differential expression of ARGs, we established a novel risk model for predicting HCC prognosis. This model can also be used to inform the individualized treatment of HCC patients.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Zhicheng Zhuang ◽  
Huajun Cai ◽  
Hexin Lin ◽  
Bingjie Guan ◽  
Yong Wu ◽  
...  

Background. Pyroptosis has been confirmed as a type of inflammatory programmed cell death in recent years. However, the prognostic role of pyroptosis in colon cancer (CC) remains unclear. Methods. Dataset TCGA-COAD which came from the TCGA portal was taken as the training cohort. GSE17538 from the GEO database was treated as validation cohorts. Differential expression genes (DEGs) between normal and tumor tissues were confirmed. Patients were classified into two subgroups according to the expression characteristics of pyroptosis-related DEGs. The LASSO regression analysis was used to build the best prognostic signature, and its reliability was validated using Kaplan–Meier, ROC, PCA, and t-SNE analyses. And a nomogram based on the multivariate Cox analysis was developed. The enrichment analysis was performed in the GO and KEGG to investigate the potential mechanism. In addition, we explored the difference in the abundance of infiltrating immune cells and immune microenvironment between high- and low-risk groups. And we also predicted the association of common immune checkpoints with risk scores. Finally, we verified the expression of the pyroptosis-related hub gene at the protein level by immunohistochemistry. Results. A total of 23 pyroptosis-related DEGs were identified in the TCGA cohort. Patients were classified into two molecular clusters (MC) based on DEGs. Kaplan–Meier survival analysis indicated that patients with MC1 represented significantly poorer OS than patients with MC2. 13 overall survival- (OS-) related DEGs in MCs were used to construct the prognostic signature. Patients in the high-risk group exhibited poorer OS compared to those in the low-risk group. Combined with the clinical features, the risk score was found to be an independent prognostic factor of CC patients. The above results are verified in the external dataset GSE17538. A nomogram was established and showed excellent performance. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that the varied prognostic performance between high- and low-risk groups may be related to the immune response mediated by local inflammation. Further analysis showed that the high-risk group has stronger immune cell infiltration and lower tumor purity than the low-risk group. Through the correlation between risk score and immune checkpoint expression, T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) was predicted as a potential therapeutic target for the high-risk group. Conclusion. The 13-gene signature was associated with OS, immune cells, tumor purity, and immune checkpoints in CC patients, and it could provide the basis for immunotherapy and predicting prognosis and help clinicians make decisions for individualized treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yue Wu ◽  
Zheng Liu ◽  
Xian Wei ◽  
Huan Feng ◽  
Bintao Hu ◽  
...  

Post-transcriptional regulation plays a leading role in gene regulation and RNA binding proteins (RBPs) are the most important posttranscriptional regulatory protein. RBPs had been found to be abnormally expressed in a variety of tumors and is closely related to its occurrence and progression. However, the exact mechanism of RBPs in bladder cancer (BC) is unknown. We downloaded transcriptomic data of BC from the Cancer Genome Atlas (TCGA) database and used bioinformatics techniques for subsequent analysis. A total of 116 differentially expressed RBPs were selected, among which 61 were up-regulated and 55 were down-regulated. We then identified 12 prognostic RBPs including CTIF, CTU1, DARS2, ENOX1, IGF2BP2, LIN28A, MTG1, NOVA1, PPARGC1B, RBMS3, TDRD1, and ZNF106, and constructed a prognostic risk score model. Based on this model we found that patients in the high-risk group had poorer overall survival (P &lt; 0.001), and the area under the receiver operator characteristic curve for this model was 0.677 for 1 year, 0.697 for 3 years, and 0.709 for 5 years. Next, we drew a nomogram based on the risk score and other clinical variables, which showed better predictive performance. Our findings contribute to a better understanding of the pathogenesis, progression and metastasis of BC. The model of these 12 genes has good predictive value and may have good prospects for improving clinical treatment regimens and patient prognosis.


2020 ◽  
Author(s):  
Li Wang ◽  
Na Zhou ◽  
Jialin Qu ◽  
Man Jiang ◽  
Xiaochun Zhang

Abstract Background: Hepatocellular carcinoma (HCC) is a leading cause of cancer-related morbidity and mortality among all human cancers. Studies have demonstrated that RNA binding proteins (RBPs) involved in the biological process of cancers including hepatocellular cancer. In this study, we aim to identify clinical value of RNA binding proteins for hepatocellular carcinoma.Methods: We analyses the data of HCC that downloaded from the Cancer Genome Atlas (TCGA) database and determined the differently expressed of RBPs between cancer and normal tissues. We further elucidate the function of RBPs by utilized Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Gene signature of SMG5, EZH2, FBLL1, ZNF239, IGF2BP3 were generated by performed the univariate and multivariate Cox regression and LASSO regression analysis. CIBERSORT analysis was used to evaluation of tumor-infiltrating immune cells in different group. We built and verify a prognosis nomogram base on RBPs-related genes. Gene signature was validated by the International Cancer Genome Consortium (ICGC) database. The expressions of RBPs-related genes were validated by using Oncomine database, and the Human Protein Atlas.Result: Most of RBPs-related genes were significantly different in cancer and normal tissue. The survival of patients in the different group was statistically different. The Gene signature showed good performance for predicting the survival of HCC patients by having a better area under the receiver operating characteristic curve than other clinicopathological parameters (AUC=0.758). The patients in the high-risk group were more likely to have a higher Macrophages M0. Conclusion: Gene signature constructed by RNA binding proteins can be independent risk factors for hepatocellular carcinoma patients.


2022 ◽  
Vol 12 ◽  
Author(s):  
Donlin Lai ◽  
Lin Tan ◽  
Xiaojia Zuo ◽  
DingSheng Liu ◽  
Deyi Jiao ◽  
...  

Ferroptosis is associated with the prognosis and therapeutic responses of patients with various cancers. LncRNAs are reported to exhibit antitumor or oncogenic functions. Currently, few studies have assessed the combined effects of ferroptosis and lncRNAs on the prognosis and therapy of stomach cancer. In this study, transcriptomic and clinical data were downloaded from TCGA database, and ferroptosis-related genes were obtained from the FerrDb database. Through correlation analysis, Cox analysis, and the Lasso algorithm, 10 prognostic ferroptosis-related lncRNAs (AC009299.2, AC012020.1, AC092723.2, AC093642.1, AC243829.4, AL121748.1, FLNB-AS1, LINC01614, LINC02485, LINC02728) were screened to construct a prognostic model, which was verified in two test cohorts. Risk scores for patients with stomach cancer were calculated, and patients were divided into two risk groups. The low-risk group, based on the median value, had a longer overall survival time in the KM curve, and a lower proportion of dead patients in the survival distribution curve. Potential mechanisms and possible functions were revealed using GSEA and the ceRNA network. By integrating clinical information, the association between lncRNAs and clinical features was analyzed and several features affecting prognosis were identified. Then, a nomogram was developed to predict survival rates, and its good predictive performance was indicated by a relatively high C-index (0.67118161) and a good match in calibration curves. Next, the association between these lncRNAs and therapy was explored. Patients in the low-risk group had an immune-activating environment, higher immune scores, higher TMB, lower TIDE scores, and higher expression of immune checkpoints, suggesting they might receive a greater benefit from immune checkpoint inhibitor therapy. In addition, a significant difference in the sensitivity to mitomycin. C, cisplatin, and docetaxel, but not etoposide and paclitaxel, was observed. In summary, this model had guiding significance for prognosis and personalized therapy. It helped screen patients with stomach cancer who might benefit from immunotherapy and guided the selection of personalized chemotherapeutic drugs.


2020 ◽  
Author(s):  
Yi Zhang ◽  
Yuzhi Wang ◽  
Chengwen Li ◽  
Tianhua Jiang

Abstract Background: Gastric cancer (GC) is one of the most common cancers with high incidence and mortality worldwide. Recently, RNA-binding proteins (RBPs) have drawn more and more attention for its role in cancer pathophysiology. In this study, we aim to explore the function and clinical implication of RBPs in GC. Methods: RNA sequencing data along with the corresponding clinical information of GC patients were downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed RNA-binding proteins (DERBPs) between tumor and normal tissues were identified by ‘limma’ package. Functional enrichment analysis and the protein-protein interaction (PPI) network were harnessed to explore the function and interaction of DERBPs. Next, Univariate and multiple Cox regression were applied to screen prognosis-related hub RBPs and to construct a signature for BC. Meanwhile, a nomogram was built based on the same RBPs. Results: A total of 296 DERBPs were found, and most of them mainly related to post-transcriptional regulation of RNA and ribonucleoprotein. A PPI network of DERBPs was constructed, consisting of 262 nodes and 2567 edges. A prognostic signature was built depended on seven prognosis-related hub RBPs that could divide GC patients into high- and low-risk groups. Survival analysis showed that the high-risk group had a worse prognosis compared to the low-risk group and the time-dependent receiver operating characteristic (ROC) curves suggested that the signature existed moderate predictive capacities of survival for GC patients. Similar results were obtained from another independent set GSE84437, confirming the robustness of signature. Calibration plots reported good consistency between overall survival (OS) prediction by nomogram and actual observation. Conclusion: The findings of this study would provide evidence of the effect of RBPs on GC as well as offering novel potential biomarkers in prognosis prediction and clinical decision for GC patients.


2021 ◽  
Author(s):  
Hao Yu ◽  
Minjie Wang ◽  
Xuan Wang ◽  
Xiaobing Jiang

Abstract Purpose The extracellular matrix (ECM) plays a vital role in the progression and metastasis of glioma and is an important part of the tumor microenvironment. However, there are few studies on the overall role of the ECM in the glioma immune microenvironment. This study aimed to analyze the prognosis of matrisomes in patients with glioma. Methods Overall, 676 glioma patients in The Cancer Genome Atlas (TCGA) database were divided into the low, moderate, and high immune infiltration groups. Immune-related matrisomes differentially expressed among the three groups were analyzed, and a risk signature was established. Eight immune-related matrisomes were screened, namely, LIF, LOX, MMP9, S100A4, SRPX2, SLIT1, SMOC1, and TIMP1. Kaplan Meier analysis, operating characteristic curve (ROC) analysis and nomogram were constructed to analyze the relationships between risk signatures and the prognosis of glioma patients. Results The risk signature was significantly correlated with the overall survival (OS) of glioma patients. Both high- and low-risk signatures were also associated with some immune checkpoints. In addition, analysis of somatic mutations and anti-PD1/L1 immunotherapy responses in the high- and low-risk groups showed that the high-risk group had worse prognosis and a higher response to anti-PD1/L1 immunotherapy. qPCR and immunohistochemical analysis showed that LIF, LOX, MMP9, S100A4, SRPX2 and TIMP1 were highly expressed in glioma, while SLITI1 and SMOC1 were low expressed in glioma. Conclusions Matrisomes play a vital role in the complex immune microenvironment of gliomas. Our analysis of immune-related matrisomes can improve understanding of the characteristics of the glioma immune microenvironment and provide important clues for glioma immunotherapy in the future.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8509 ◽  
Author(s):  
Wei Li ◽  
Na Li ◽  
Lina Gao ◽  
Chongge You

Lung cancer is the top cause of carcinoma-associated deaths worldwide. RNA binding proteins (RBPs) dysregulation has been reported in various malignant tumors, and that dysregulation is closely associated with tumorigenesis and tumor progression. However, little is known about the roles of RBPs in lung adenocarcinoma (LUAD). In this study, we downloaded the RNA sequencing data of LUAD from The Cancer Genome Atlas (TCGA) database and determined the differently expressed RBPs between normal and cancer tissues. We then performed an integrative analysis to explore the expression and prognostic significance of these RBPs. A total of 164 differently expressed RBPs were identified, including 40 down-regulated and 124 up-regulated RBPs. Pathway and Gene ontology (GO) analysis indicated that the differently expressed RBPs were mainly related to RNA processing, RNA metabolic process, RNA degradation, RNA transport, splicing, localization, regulation of translation, RNA binding, TGF-beta signaling pathway, mRNA surveillance pathway, and aminoacyl-tRNA biosynthesis. Survival analysis revealed that the high expression of BOP1 or GNL3 or WDR12 or DCAF13 or IGF2BP3 or IGF2BP1 were associated with poor overall survival (OS). Conversely, overexpression of KHDRBS2/SMAD predicted high OS in these patients. ROC curve analysis showed that the eight hub genes with a better diagnostic accuracy to distinguish lung adenocarcinoma. The results provided novel insights into the pathogenesis of LUAD and the development of treatment targets and prognostic molecular markers.


Sign in / Sign up

Export Citation Format

Share Document