scholarly journals Modulation of Cancer Cell Autophagic Responses by Graphene-Based Nanomaterials: Molecular Mechanisms and Therapeutic Implications

Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4145
Author(s):  
Biljana Ristic ◽  
Ljubica Harhaji-Trajkovic ◽  
Mihajlo Bosnjak ◽  
Ivana Dakic ◽  
Srdjan Mijatovic ◽  
...  

Graphene-based nanomaterials (GNM) are plausible candidates for cancer therapeutics and drug delivery systems. Pure graphene and graphene oxide nanoparticles, as well as graphene quantum dots and graphene nanofibers, were all able to trigger autophagy in cancer cells through both transcriptional and post-transcriptional mechanisms involving oxidative/endoplasmic reticulum stress, AMP-activated protein kinase, mechanistic target of rapamycin, mitogen-activated protein kinase, and Toll-like receptor signaling. This was often coupled with lysosomal dysfunction and subsequent blockade of autophagic flux, which additionally increased the accumulation of autophagy mediators that participated in apoptotic, necrotic, or necroptotic death of cancer cells and influenced the immune response against the tumor. In this review, we analyze molecular mechanisms and structure–activity relationships of GNM-mediated autophagy modulation, its consequences for cancer cell survival/death and anti-tumor immune response, and the possible implications for the use of GNM in cancer therapy.

Biomolecules ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 735 ◽  
Author(s):  
Vaishali Aggarwal ◽  
Hardeep Tuli ◽  
Ayşegül Varol ◽  
Falak Thakral ◽  
Mukerrem Yerer ◽  
...  

Reactive oxygen species (ROS) play a pivotal role in biological processes and continuous ROS production in normal cells is controlled by the appropriate regulation between the silver lining of low and high ROS concentration mediated effects. Interestingly, ROS also dynamically influences the tumor microenvironment and is known to initiate cancer angiogenesis, metastasis, and survival at different concentrations. At moderate concentration, ROS activates the cancer cell survival signaling cascade involving mitogen-activated protein kinase/extracellular signal-regulated protein kinases 1/2 (MAPK/ERK1/2), p38, c-Jun N-terminal kinase (JNK), and phosphoinositide-3-kinase/ protein kinase B (PI3K/Akt), which in turn activate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), matrix metalloproteinases (MMPs), and vascular endothelial growth factor (VEGF). At high concentrations, ROS can cause cancer cell apoptosis. Hence, it critically depends upon the ROS levels, to either augment tumorigenesis or lead to apoptosis. The major issue is targeting the dual actions of ROS effectively with respect to the concentration bias, which needs to be monitored carefully to impede tumor angiogenesis and metastasis for ROS to serve as potential therapeutic targets exogenously/endogenously. Overall, additional research is required to comprehend the potential of ROS as an effective anti-tumor modality and therapeutic target for treating malignancies.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2733
Author(s):  
Esra Küpeli Akkol ◽  
Iffet Irem Tatlı ◽  
Gökçe Şeker Karatoprak ◽  
Osman Tuncay Ağar ◽  
Çiğdem Yücel ◽  
...  

Many anticancer active compounds are known to have the capacity to destroy pathologically proliferating cancer cells in the body, as well as to destroy rapidly proliferating normal cells. Despite remarkable advances in cancer research over the past few decades, the inclusion of natural compounds in researches as potential drug candidates is becoming increasingly important. However, the perception that the natural is reliable is an issue that needs to be clarified. Among the various chemical classes of natural products, anthraquinones have many biological activities and have also been proven to exhibit a unique anticancer activity. Emodin, an anthraquinone derivative, is a natural compound found in the roots and rhizomes of many plants. The anticancer property of emodin, a broad-spectrum inhibitory agent of cancer cells, has been detailed in many biological pathways. In cancer cells, these molecular mechanisms consist of suppressing cell growth and proliferation through the attenuation of oncogenic growth signaling, such as protein kinase B (AKT), mitogen-activated protein kinase (MAPK), HER-2 tyrosine kinase, Wnt/-catenin, and phosphatidylinositol 3-kinase (PI3K). However, it is known that emodin, which shows toxicity to cancer cells, may cause kidney toxicity, hepatotoxicity, and reproductive toxicity especially at high doses and long-term use. At the same time, studies of emodin, which has poor oral bioavailability, to transform this disadvantage into an advantage with nano-carrier systems reveal that natural compounds are not always directly usable compounds. Consequently, this review aimed to shed light on the anti-proliferative and anti-carcinogenic properties of emodin, as well as its potential toxicities and the advantages of drug delivery systems on bioavailability.


2002 ◽  
pp. 1-14 ◽  
Author(s):  
C Grundker ◽  
AR Gunthert ◽  
S Westphalen ◽  
G Emons

The expression of GnRH and its receptor as a part of an autocrine regulatory system of cell proliferation has been demonstrated in a number of human malignant tumors, including cancers of the breast, ovary and endometrium. Dose-dependent antiproliferative effects of GnRH agonists in cell lines derived from these cancers have been observed by various investigators. GnRH antagonists also have marked antiproliferative activity in most breast, ovarian and endometrial cancer cell lines tested, indicating that the dichotomy of GnRH agonists and antagonists might not apply to the GnRH system in cancer cells. The classical GnRH receptor signal-transduction mechanisms, known to operate in the pituitary, are not involved in the mediation of antiproliferative effects of GnRH analogs in cancer cells. Rather, the GnRH receptor interacts with the mitogenic signal transduction of growth factor receptors and related oncogene products associated with tyrosine kinase activity, via activation of a phosphotyrosine phosphatase, resulting in downregulation of cancer cell proliferation. In addition, GnRH activates nuclear factor kappaB and protects the cancer cells from apoptosis. Furthermore, GnRH induces activation of the c-Jun N-terminal kinase/activator protein-1 (AP-1) pathway independent of the known AP-1 activators, protein kinase or mitogen activated protein kinase.


2019 ◽  
Vol 118 ◽  
pp. 109376
Author(s):  
Abdul Khalid Siraj ◽  
Rafia Begum ◽  
Roxanne Melosantos ◽  
Wafaa Albalawy ◽  
Jehan Abboud ◽  
...  

2013 ◽  
Vol 111 (3) ◽  
pp. 452-464 ◽  
Author(s):  
Gina Cecilia Pistol ◽  
Mihail Alexandru Gras ◽  
Daniela Eliza Marin ◽  
Florentina Israel-Roming ◽  
Mariana Stancu ◽  
...  

Zearalenone (ZEA) is an oestrogenic mycotoxin produced byFusariumspecies, considered to be a risk factor from both public health and agricultural perspectives. In the presentin vivostudy, a feeding trial was conducted to evaluate thein vivoeffect of a ZEA-contaminated diet on immune response in young pigs. The effect of ZEA on pro-inflammatory (TNF-α, IL-8, IL-6, IL-1β and interferon-γ) and anti-inflammatory (IL-10 and IL-4) cytokines and other molecules involved in inflammatory processes (matrix metalloproteinases (MMP)/tissue inhibitors of matrix metalloproteinases (TIMP), nuclear receptors: PPARγ and NF-κB1, mitogen-activated protein kinases (MAPK): mitogen-activated protein kinase kinase kinase 7 (TAK1)/mitogen-activated protein kinase 14 (p38α)/mitogen-activated protein kinase 8 (JNK1)/ mitogen-activated protein kinase 9 (JNK2)) in the liver of piglets was investigated. The present results showed that a concentration of 316 parts per billion ZEA leads to a significant decrease in the levels of pro- and anti-inflammatory cytokines at both gene expression and protein levels, correlated with a decrease in the levels of other inflammatory mediators, MMP and TIMP. The results also showed that dietary ZEA induces a dramatic reduction in the expressions ofNF-κB1andTAK1/p38αMAPK genes in the liver of the experimentally intoxicated piglets, and has no effect on the expression ofPPARγmRNA. The present results suggest that the toxic action of ZEA begins in the upstream of the MAPK signalling pathway by the inhibition of TAK1, a MAPK/NF-κB activator. In conclusion, the present study shows that ZEA alters several important parameters of the hepatic cellular immune response. From an economic point of view, these data suggest that, in pigs, ZEA is not only a powerful oestrogenic mycotoxin but also a potential hepatotoxin when administered through the oral route. Therefore, the present results represent additional data from cellular and molecular levels that could be taken into account in the determination of the regulation limit of the tolerance to ZEA.


2017 ◽  
Vol 8 (10) ◽  
pp. 3707-3722 ◽  
Author(s):  
Ping Wu ◽  
Siyuan Liu ◽  
Jianyu Su ◽  
Jianping Chen ◽  
Lin Li ◽  
...  

Our findings provide comprehensive evidence that isoquercitrin (ISO) influenced T24 bladder cancer cell metabolism by activating the AMPK pathway as identified by combination with metabolomics and immunoblotting assay.


Sign in / Sign up

Export Citation Format

Share Document