scholarly journals Targeting CD82/KAI1 for Precision Therapeutics in Surmounting Metastatic Potential in Breast Cancer

Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4486
Author(s):  
Maximillian Viera ◽  
George Wai Cheong Yip ◽  
Han-Ming Shen ◽  
Gyeong Hun Baeg ◽  
Boon Huat Bay

Metastasis is the main cause of mortality in breast cancer patients. There is an unmet need to develop therapies that can impede metastatic spread. Precision oncology has shown great promise for the treatment of cancers, as the therapeutic approach is tailored to a specific group of patients who are likely to benefit from the treatment, rather than the traditional approach of “one size fits all”. CD82, also known as KAI1, a glycoprotein belonging to the tetraspanin family and an established metastasis suppressor, could potentially be exploited to hinder metastases in breast cancer. This review explores the prospect of targeting CD82 as an innovative therapeutic approach in precision medicine for breast cancer patients, with the goal of preventing cancer progression and metastasis. Such an approach would entail the selection of a subset of breast cancer patients with low levels of CD82, and instituting an appropriate treatment scheme tailored towards restoring the levels of CD82 in this group of patients. Proposed precision treatment regimens include current modalities of treating breast cancer, in combination with either clinically approved drugs that could restore the levels of CD82, CD82 peptide mimics or non-coding RNA-based therapeutics.

MicroRNA ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 58-63
Author(s):  
Batool Savari ◽  
Sohrab Boozarpour ◽  
Maryam Tahmasebi-Birgani ◽  
Hossein Sabouri ◽  
Seyed Mohammad Hosseini

Background: Breast cancer is the most common cancer diagnosed in women worldwide. So it seems that there's a good chance of recovery if it's detected in its early stages even before the appearances of symptoms. Recent studies have shown that miRNAs play an important role during cancer progression. These transcripts can be tracked in liquid samples to reveal if cancer exists, for earlier treatment. MicroRNA-21 (miR-21) has been shown to be a key regulator of carcinogenesis, and breast tumor is no exception. Objective: The present study was aimed to track the miR-21 expression level in serum of the breast cancer patients in comparison with that of normal counterparts. Methods: Comparative real-time polymerase chain reaction was applied to determine the levels of expression of miR-21 in the serum samples of 57 participants from which, 42 were the patients with breast cancer including pre-surgery patients (n = 30) and post-surgery patients (n = 12), and the others were the healthy controls (n = 15). Results: MiR-21 was significantly over expressed in the serum of breast cancer patients as compared with healthy controls (P = 0.002). A significant decrease was also observed following tumor resection (P < 0.0001). Moreover, it was found that miR-21 overexpression level was significantly associated with tumor grade (P = 0.004). Conclusion: These findings suggest that miR-21 has the potential to be used as a novel breast cancer biomarker for early detection and prognosis, although further experiments are needed.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Charles F. Streckfus ◽  
Daniel Arreola ◽  
Cynthia Edwards ◽  
Lenora Bigler

Purpose. The objective of this study was to compare the salivary protein profiles from individuals diagnosed with breast cancer that were either HER2/neu receptor positive or negative.Methods. Two pooled saliva specimens underwent proteomic analysis. One pooled specimen was from women diagnosed with stage IIa HER2/neu-receptor-positive breast cancer patients (n=10) and the other was from women diagnosed with stage IIa HER2/neu-receptor-negative cancer patients (n=10). The pooled samples were trypsinized and the peptides labeled with iTRAQ reagent. Specimens were analyzed using an LC-MS/MS mass spectrometer.Results. The results yielded approximately 71 differentially expressed proteins in the saliva specimens. There were 34 upregulated proteins and 37 downregulated proteins.


2014 ◽  
Vol 29 (3) ◽  
pp. 239-245 ◽  
Author(s):  
Motoyoshi Endo ◽  
Yutaka Yamamoto ◽  
Masahiro Nakano ◽  
Tetsuro Masuda ◽  
Haruki Odagiri ◽  
...  

Introduction Breast cancer is a leading cause of cancer-related death in women worldwide, and its metastasis is a major cause of disease mortality. Therefore, identification of the mechanisms underlying breast cancer metastasis is crucial for the development of therapeutic and diagnostic strategies. Our recent study of immunodeficient female mice transplanted with MDA-MB231 breast cancer cells demonstrated that tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) accelerates metastasis through both increasing tumor cell migration in an autocrine/paracrine manner, and enhancing tumor angiogenesis. To determine whether ANGPTL2 contributes to its clinical pathogenesis, we asked whether serum ANGPTL2 levels reflect the clinical features of breast cancer progression. Methods We monitored the levels of secreted ANGPTL2 in supernatants of cultured proliferating MDA-MB231 cells. We also determined whether the circulating ANGPTL2 levels were positively correlated with cancer progression in an in vivo breast cancer xenograft model using MDA-MB231 cells. Finally, we investigated whether serum ANGPTL2 levels were associated with clinical features in breast cancer patients. Results Both in vitro and in vivo experiments showed that the levels of ANGPTL2 secreted from breast cancer cells increased with cell proliferation and cancer progression. Serum ANGPTL2 levels in patients with metastatic breast cancer were significantly higher than those in healthy subjects or in patients with ductal carcinoma in situ or non-metastatic invasive ductal carcinoma. Serum ANGPTL2 levels in patients negative for estrogen receptors and progesterone receptors, particularly triple-negative cases, reflected histological grades. Conclusions These findings suggest that serum ANGPTL2 levels in breast cancer patients could represent a potential marker of breast cancer metastasis.


2019 ◽  
Vol 39 (23) ◽  
Author(s):  
Yuichi Mitobe ◽  
Kazuhiro Ikeda ◽  
Takashi Suzuki ◽  
Kiyoshi Takagi ◽  
Hidetaka Kawabata ◽  
...  

ABSTRACT Acquired endocrine therapy resistance is a significant clinical problem for breast cancer patients. In recent years, increasing attention has been paid to long noncoding RNA (lncRNA) as a critical modulator for cancer progression. Based on RNA-sequencing data of breast invasive carcinomas in The Cancer Genome Atlas database, we identified thymopoietin antisense transcript 1 (TMPO-AS1) as a functional lncRNA that significantly correlates with proliferative biomarkers. TMPO-AS1 positivity analyzed by in situ hybridization significantly correlates with poor prognosis of breast cancer patients. TMPO-AS1 expression was upregulated in endocrine therapy-resistant MCF-7 cells compared with levels in parental cells and was estrogen inducible. Gain and loss of TMPO-AS1 experiments showed that TMPO-AS1 promotes the proliferation and viability of estrogen receptor (ER)-positive breast cancer cells in vitro and in vivo. Global expression analysis using a microarray demonstrated that TMPO-AS1 is closely associated with the estrogen signaling pathway. TMPO-AS1 could positively regulate estrogen receptor 1 (ESR1) mRNA expression by stabilizing ESR1 mRNA through interaction with ESR1 mRNA. Enhanced expression of ESR1 mRNA by TMPO-AS1 could play a critical role in the proliferation of ER-positive breast cancer. Our findings provide a new insight into the understanding of molecular mechanisms underlying hormone-dependent breast cancer progression and endocrine resistance.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e21029-e21029
Author(s):  
Christopher Neal ◽  
Sujita Sukumaran ◽  
Vishal Gupta ◽  
Insiya Jafferji ◽  
Dave Hasegawa ◽  
...  

e21029 Background: Up-regulation of epithelial mesenchymal transition (EMT) and the reduction of epithelial marker expression is associated with invasion, cancer progression, resistance to conventional therapies and poor prognosis. ApoStream, a novel continuous flow dielectrophoresis field-flow fractionation (DEP-FFF) device, was used to enable antibody-independent capture of circulating cancer cells (CCCs,also referred to as circulating tumor cells, CTC) for subsequent phenotyping of EMT markers. Methods: A side-by-side comparison of CellSearch and ApoStream was performed on 10 metastatic breast cancer patients. A multiplexed immunofluorescent assay and laser scanning cytometry analyses were used to unambiguously identify CK+/CD45–/DAPI+ CCCs and quantify their EpCAM and vimentin expression. Results: ApoStream recovered CK+/CD45–/DAPI+ CCCs from each breast cancer patient sample tested (mean=255 CCCs per 7.5 ml blood, see Table). ApoStream consistently recovered significantly higher number of CCCs compared to CellSearch (p=0.024). ApoStream recovered both EpCAM+ and EpCAM– CCCs in 50% and 90% of patients, respectively. Vimentin+ CCCs were isolated from 90% of patients. Conclusions: ApoStream’s higher capture efficiency demonstrated the majority of CCCs from breast cancer patients were EpCAM negative and vimentin-positive. ApoStream technology can be used to monitor CCCs undergoing EMT. [Table: see text]


Author(s):  
Syeda Kiran Riaz ◽  
Walizeb Khan ◽  
Fen Wang ◽  
Tanwir Khaliq ◽  
Amber Malik ◽  
...  

The underlying mechanism of fibroblast growth factor receptor 1 (FGFR1) mediated carcinogenesis is still not fully understood. For instance, FGFR1 upregulation leads to endocrine therapy resistance in breast cancer patients. The current study aimed to identify FGFR1-linked genes to devise improved therapeutic strategies. RNA-seq and microarray expression data of 1,425 breast cancer patients from two independent cohorts were downloaded for the analysis. Gene Set Enrichment Analysis (GSEA) was performed to identify differentially expressed pathways associated with FGFR1 expression. Validation was done using 150 fresh tumor biopsy samples of breast cancer patients. The clinical relevance of mRNA and protein expression of FGFR1 and its associated genes were also evaluated in mouse embryonic fibroblasts (MEFs) and breast cancer cell line (MDA-MB-231). Furthermore, MDA-MB-231 cell line was treated with AZD4547 and GANT61 to identify the probable role of FGFR1 and its associated genes on cells motility and invasion. According to GSEA results, SHH pathway genes were significantly upregulated in FGFR1 patients in both discovery cohorts of breast cancer. Statistical analyses using both discovery cohorts and 150 fresh biopsy samples revealed strong association of FGFR1 and GLI1, a member of SHH pathway. The increase in the expression of these molecules was associated with poor prognosis, lymph node involvement, late stage, and metastasis. Combined exposures to AZD4547 (FGFR1 inhibitor) and GANT61 (GLI1 inhibitor) significantly reduced cell proliferation, cell motility, and invasion, suggesting molecular crosstalk in breast cancer progression and metastasis. A strong positive feedback mechanism between FGFR1–GLI1 axis was observed, which significantly increased cell proliferation and metastasis. Targeting FGFR1–GLI1 simultaneously will significantly improve the prognosis of breast cancer in patients.


2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Kimberly R. Jordan ◽  
Jessica K. Hall ◽  
Troy Schedin ◽  
Michelle Borakove ◽  
Jenny J. Xian ◽  
...  

Abstract Background Extracellular vesicles (EVs) are small membrane particles that contribute to cancer progression and metastases by transporting biologically significant proteins and nucleic acids. They may also serve as biomarkers of various disease states or important therapeutic targets. Breast cancer EVs have the potential to change the behavior of other cells in their microenvironment. However, the proteomic content of EVs isolated from young women’s breast cancer patients and the mechanisms underlying the influence of EVs on tumor cell behavior have not yet been reported. Methods In our current translational studies, we compared the proteomic content of EVs isolated from invasive breast cancer cell lines and plasma samples from young women’s breast cancer (YWBC) patients and age-matched healthy donors using mass spectrometry. We analyzed the functionality of EVs in two dimensional tumor cell invasion assays and the gene expression changes in tumor cells after incubation with EVs. Results We found that treatment with EVs from both invasive breast cancer cell lines and plasma of YWBC patients altered the invasive properties of non-invasive breast cancer cells. Proteomics identified differences between EVs from YWBC patients and healthy donors that correlated with their altered function. Further, we identified gene expression changes in non-invasive breast cancer cells after treatment with EVs that implicate the Focal Adhesion Kinase (FAK) signaling pathway as a potential targetable pathway affected by breast cancer-derived EVs. Conclusions Our results suggest that the proteome of EVs from breast cancer patients reflects their functionality in tumor motility assays and may help elucidate the role of EVs in breast cancer progression.


Tumor Biology ◽  
2018 ◽  
Vol 40 (1) ◽  
pp. 101042831774825 ◽  
Author(s):  
Mahmood Y Hachim ◽  
Ibrahim Y Hachim ◽  
Meiou Dai ◽  
Suhad Ali ◽  
Jean-Jacques Lebrun

While TGFβ plays a critical role in tumor formation and progression, the role and contribution of its three different isoforms remain unclear. In this study, we aimed at elucidating the prognostic value of the TGFβ isoforms and assessed their expression levels in breast cancer patients at different stages of the disease. We found higher levels of TGFβ1 and TGFβ3 in cancer patients compared to normal tissues, with no significant changes in TGFβ2 expression. Similarly, TGFβ1 and TGFβ3, but not TGFβ2, showed higher expression levels in advanced lymph node–positive and metastatic tumors, suggesting different roles for the different isoforms in tumor progression and the metastatic process, while in the least aggressive molecular subtype (luminal A), expression of the three TGFβ isoforms significantly correlated with expression of both TGFβ receptors, such correlation only occurred between TGFβ1 and TGFβ3 and the TGFβ type II receptor (TβRII) in the highly aggressive basal-like subtype. Interestingly, a distinct and somehow opposite pattern was observed in HER-2 tumors, only showing significant association pattern between TGFβ2 and the TGFβ type I receptor (TβRI). Finally, the three TGFβ isoforms showed distinct association patterns with patient outcome depending on the different molecular subtype, highlighting context-dependent, differential prognostic values.


2017 ◽  
Vol 32 (3) ◽  
pp. 333-336 ◽  
Author(s):  
Francesca De luliis ◽  
Gerardo Salerno ◽  
Ludovica Taglieri ◽  
Rosina Lanza ◽  
Patrizia Cardelli ◽  
...  

Background It is important to identify novel plasmatic biomarkers that can contribute to assessing the prognosis and outcome of breast cancer patients. Neuregulin-1 (NRG1) and galectin-3 (Gal-3) are proteins that are involved in breast cancer development and patient survival; therefore, we studied whether the serum concentration of these 2 proteins can be correlated to breast cancer progression. Methods Plasmatic NRG1 and Gal-3 were evaluated in 25 healthy controls and 50 breast cancer patients at baseline and at 3 and 6 months after treatment with anthracyclines and taxanes, with or without trastuzumab. Results NRG1 and Gal-3 were significantly more elevated in cancer patients than in healthy controls; furthermore, NRG1 and Gal-3 were significantly increased after chemotherapy and were predictive of mortality at 1 year. Conclusions Circulating NRG1 and Gal-3 can be additional biomarkers indicative of prognosis and outcomes for breast cancer patients.


Sign in / Sign up

Export Citation Format

Share Document