scholarly journals The Roles of Diacylglycerol Kinase α in Cancer Cell Proliferation and Apoptosis

Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5190
Author(s):  
Fumio Sakane ◽  
Fumi Hoshino ◽  
Masayuki Ebina ◽  
Hiromichi Sakai ◽  
Daisuke Takahashi

Diacylglycerol (DG) kinase (DGK) phosphorylates DG to generate phosphatidic acid (PA). The α isozyme is activated by Ca2+ through its EF-hand motifs and tyrosine phosphorylation. DGKα is highly expressed in several refractory cancer cells including melanoma, hepatocellular carcinoma, and glioblastoma cells. In melanoma cells, DGKα is an antiapoptotic factor that activates nuclear factor-κB (NF-κB) through the atypical protein kinase C (PKC) ζ-mediated phosphorylation of NF-κB. DGKα acts as an enhancer of proliferative activity through the Raf–MEK–ERK pathway and consequently exacerbates hepatocellular carcinoma progression. In glioblastoma and melanoma cells, DGKα attenuates apoptosis by enhancing the phosphodiesterase (PDE)-4A1–mammalian target of the rapamycin pathway. As PA activates PKCζ, Raf, and PDE, it is likely that PA generated by DGKα plays an important role in the proliferation/antiapoptosis of cancer cells. In addition to cancer cells, DGKα is highly abundant in T cells and induces a nonresponsive state (anergy), which represents the main mechanism by which advanced cancers escape immune action. In T cells, DGKα attenuates the activity of Ras-guanyl nucleotide-releasing protein, which is activated by DG and avoids anergy through DG consumption. Therefore, a DGKα-specific inhibitor is expected to be a dual effective anticancer treatment that inhibits cancer cell proliferation and simultaneously enhances T cell functions. Moreover, the inhibition of DGKα synergistically enhances the anticancer effects of programmed cell death-1/programmed cell death ligand 1 blockade. Taken together, DGKα inhibition provides a promising new treatment strategy for refractory cancers.

2017 ◽  
Vol 41 (10) ◽  
pp. 4087-4095
Author(s):  
Jia Yu ◽  
Xiaoqing Zhao ◽  
Nanmengzi Zhang ◽  
Chaoqun You ◽  
Gang Yao ◽  
...  

Nine novel 3-nitroacridines were synthesized, of which 3 compounds inhibited gastric cancer cell proliferation via an autophagy-associated cell death pathway.


2021 ◽  
Vol 22 (16) ◽  
pp. 8686
Author(s):  
Rajdeep Chakraborty ◽  
Karen Vickery ◽  
Charbel Darido ◽  
Shoba Ranganathan ◽  
Honghua Hu

Oral cancer is a major global health problem with high incidence and low survival rates. The oral cavity contains biofilms as dental plaques that harbour both Gram-negative and Gram-positive bacterial antigens, lipopolysaccharide (LPS) and lipoteichoic acid (LTA), respectively. LPS and LTA are known to stimulate cancer cell growth, and the bioactive phytochemical capsaicin has been reported to reverse this effect. Here, we tested the efficacy of oral cancer chemotherapy treatment with capsaicin in the presence of LPS, LTA or the combination of both antigens. LPS and LTA were administered to Cal 27 oral cancer cells prior to and/or concurrently with capsaicin, and the treatment efficacy was evaluated by measuring cell proliferation and apoptotic cell death. We found that while capsaicin inhibits oral cancer cell proliferation and metabolism (MT Glo assay) and increases cell death (Trypan blue exclusion assay and Caspase 3/7 expression), its anti-cancer effect was significantly reduced on cells that are either primed or exposed to the bacterial antigens. Capsaicin treatment significantly increased oral cancer cells’ suppressor of cytokine signalling 3 gene expression. This increase was reversed in the presence of bacterial antigens during treatment. Our data establish a rationale for clinical consideration of bacterial antigens that may interfere with the treatment efficacy of oral cancer.


2011 ◽  
Vol 108 (3) ◽  
pp. 424-430 ◽  
Author(s):  
Mu Yao ◽  
Chanlu Xie ◽  
Maryrose Constantine ◽  
Sheng Hua ◽  
Brett D. Hambly ◽  
...  

We have developed a blend of food extracts commonly consumed in the Mediterranean and East Asia, named blueberry punch (BBP), with the ultimate aim to formulate a chemoprevention strategy to inhibit prostate cancer progression in men on active surveillance protocol. We demonstrated previously that BBP inhibited prostate cancer cell proliferation in vitro and in vivo. The purpose of this study was to determine the molecular mechanism responsible for the suppression of prostate cancer cell proliferation by BBP. Treatment of lymph node-metastasised prostate cancer cells (LNCaP) and bone-metastasised prostate cancer cells (PC-3 and MDA-PCa-2b) with BBP (up to 0·8 %) for 72 h increased the percentage of cells at the G0/G1 phase and decreased those at the S and G2/M phases. The finding was supported by the reduction in the percentage of Ki-67-positive cells and of DNA synthesis measured by the incorporation of 5-ethynyl-2′-deoxyuridine. Concomitantly, BBP treatment decreased the protein levels of phosphorylated retinoblastoma, cyclin D1 and E, cyclin-dependent kinase (CDK) 4 and 2, and pre-replication complex (CDC6 and MCM7) in LNCaP and PC-3 cells, whereas CDK inhibitor p27 was elevated in these cell lines. In conclusion, BBP exerts its anti-proliferative effect on prostate cancer cells by modulating the expression and phosphorylation of multiple regulatory proteins essential for cell proliferation.


2016 ◽  
Vol 12 (6) ◽  
pp. 4896-4904 ◽  
Author(s):  
Hideyuki Takata ◽  
Mitsuhiro Kudo ◽  
Tetsushi Yamamoto ◽  
Junji Ueda ◽  
Kousuke Ishino ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Nitchapon Paiboon ◽  
Witchayaporn Kamprom ◽  
Sirikul Manochantr ◽  
Chairat Tantrawatpan ◽  
Duangrat Tantikanlayaporn ◽  
...  

Background. Cancer has been considered a serious global health problem and a leading cause of morbidity and mortality worldwide. Despite recent advances in cancer therapy, treatments of advance stage cancers are mostly ineffective resulting in poor survival of patients. Recent evidences suggest that multipotent human mesenchymal stem cells (hMSCs) play important roles in growth and metastasis of several cancers by enhancing their engraftment and inducing tumor neovascularization. However, the effect of hMSCs on cancer cells is still controversial because there are also evidences demonstrating that hMSCs inhibited growth and metastasis of some cancers. Methods. In this study, we investigated the effects of bioactive molecules released from bone marrow and gestational tissue-derived hMSCs on the proliferation of various human cancer cells, including C3A, HT29, A549, Saos-2, and U251. We also characterized the hMSC-derived factors that inhibit cancer cell proliferation by protein fractionation and mass spectrometry analysis. Results. We herein make a direct comparison and show that the effects of hMSCs on cancer cell proliferation and migration depend on both hMSC sources and cancer cell types and cancer-derived bioactive molecules did not affect the cancer suppressive capacity of hMSCs. Moreover, hMSCs use distinct combination of bioactive molecules to suppress the proliferation of human hepatoblastoma and colorectal cancer cells. Using protein fractionation and mass spectrometry analysis, we have identified several novel hMSC-derived factors that might be able to suppress cancer cell proliferation. Conclusion. We believe that the procedure developed in this study could be used to discover other therapeutically useful molecules released by various hMSC sources for a future in vivo study.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ricardo Romero-Moreno ◽  
Kimberly J. Curtis ◽  
Thomas R. Coughlin ◽  
Maria Cristina Miranda-Vergara ◽  
Shourik Dutta ◽  
...  

Abstract Bone is one of the most common sites for metastasis across cancers. Cancer cells that travel through the vasculature and invade new tissues can remain in a non-proliferative dormant state for years before colonizing the metastatic site. Switching from dormancy to colonization is the rate-limiting step of bone metastasis. Here we develop an ex vivo co-culture method to grow cancer cells in mouse bones to assess cancer cell proliferation using healthy or cancer-primed bones. Profiling soluble factors from conditioned media identifies the chemokine CXCL5 as a candidate to induce metastatic colonization. Additional studies using CXCL5 recombinant protein suggest that CXCL5 is sufficient to promote breast cancer cell proliferation and colonization in bone, while inhibition of its receptor CXCR2 with an antagonist blocks proliferation of metastatic cancer cells. This study suggests that CXCL5 and CXCR2 inhibitors may have efficacy in treating metastatic bone tumors dependent on the CXCL5/CXCR2 axis.


Sign in / Sign up

Export Citation Format

Share Document