scholarly journals Targeting Oncogenic Gαq/11 in Uveal Melanoma

Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6195
Author(s):  
Dominic Lapadula ◽  
Jeffrey L. Benovic

Uveal melanoma is the most common intraocular cancer in adults and arises from the transformation of melanocytes in the uveal tract. While treatment of the primary tumor is often effective, 36–50% of patients develop metastatic disease primarily to the liver. While various strategies have been used to treat the metastatic disease, there remain no effective treatments that improve survival. Significant insight has been gained into the pathways that are altered in uveal melanoma, with mutually exclusive activating mutations in the GNAQ and GNA11 genes being found in over 90% of patients. These genes encode the alpha subunits of the hetetrotrimeric G proteins, Gq and G11, and mutations result in activation of several important signaling pathways, including phospholipase C and activation of the transcription factor YAP. In this review, we discuss current efforts to target various signaling pathways in the treatment of uveal melanoma including recent efforts to target Gq and G11 in mouse models. While selective targeting of Gq and G11 provides a potential therapeutic strategy to treat uveal melanoma, it is evident that improved inhibitors and methods of delivery are needed.

1992 ◽  
Vol 12 (10) ◽  
pp. 4687-4693
Author(s):  
G Kalinec ◽  
A J Nazarali ◽  
S Hermouet ◽  
N Xu ◽  
J S Gutkind

The discovery of mutated, GTPase-deficient alpha subunits of Gs or Gi2 in certain human endocrine tumors has suggested that heterotrimeric G proteins play a role in the oncogenic process. Expression of these altered forms of G alpha s or G alpha i2 proteins in rodent fibroblasts activates or inhibits endogenous adenylyl cyclase, respectively, and causes certain alterations in cell growth. However, it is not clear whether growth abnormalities result from altered cyclic AMP synthesis. In the present study, we asked whether a recently discovered family of G proteins, Gq, which does not affect adenylyl cyclase activity, but instead mediates the activation of phosphatidylinositol-specific phospholipase C harbors transforming potential. We mutated the cDNA for the alpha subunit of murine Gq in codons corresponding to a region involved in binding and hydrolysis of GTP. Similar mutations unmask the transforming potential of p21ras or activate the alpha subunits of Gs or Gi2. Our results show that when expressed in NIH 3T3 cells, activating mutations convert G alpha q into a dominant acting oncogene.


2019 ◽  
Vol 9 (7) ◽  
pp. 1316 ◽  
Author(s):  
Giuseppe Broggi ◽  
Giuseppe Musumeci ◽  
Lidia Puzzo ◽  
Andrea Russo ◽  
Michele Reibaldi ◽  
...  

Uveal melanoma represents the most common primary intraocular malignancy in adults; it may arise in any part of the uveal tract, with choroid and ciliary bodies being the most frequent sites of disease. In the present paper we studied ABCB5 expression levels in patients affected by uveal melanoma, both with and without metastasis, in order to evaluate if ABCB5 is associated with a higher risk of metastatic disease and can be used as a poor prognostic factor in uveal melanoma. The target population consisted of 23 patients affected by uveal melanoma with metastasis and 32 without metastatic disease. A high expression of ABCB5 was seen in patients with metastasis (14/23, 60.9%), compared to that observed in patients without metastasis (13/32, 40.6%). In conclusion, we found that ABCB5 expression levels were correlated with faster metastatic progression and poorer prognosis, indicating their role as a prognostic factor in uveal melanoma.


1992 ◽  
Vol 12 (10) ◽  
pp. 4687-4693 ◽  
Author(s):  
G Kalinec ◽  
A J Nazarali ◽  
S Hermouet ◽  
N Xu ◽  
J S Gutkind

The discovery of mutated, GTPase-deficient alpha subunits of Gs or Gi2 in certain human endocrine tumors has suggested that heterotrimeric G proteins play a role in the oncogenic process. Expression of these altered forms of G alpha s or G alpha i2 proteins in rodent fibroblasts activates or inhibits endogenous adenylyl cyclase, respectively, and causes certain alterations in cell growth. However, it is not clear whether growth abnormalities result from altered cyclic AMP synthesis. In the present study, we asked whether a recently discovered family of G proteins, Gq, which does not affect adenylyl cyclase activity, but instead mediates the activation of phosphatidylinositol-specific phospholipase C harbors transforming potential. We mutated the cDNA for the alpha subunit of murine Gq in codons corresponding to a region involved in binding and hydrolysis of GTP. Similar mutations unmask the transforming potential of p21ras or activate the alpha subunits of Gs or Gi2. Our results show that when expressed in NIH 3T3 cells, activating mutations convert G alpha q into a dominant acting oncogene.


Genetics ◽  
1997 ◽  
Vol 145 (3) ◽  
pp. 715-727 ◽  
Author(s):  
Richard R Zwaal ◽  
Jane E Mendel ◽  
Paul W Sternberg ◽  
Ronald H A Plasterk

Caenorhabditis elegans uses chemosensation to determine its course of development. Young larvae can arrest as dauer larvae in response to increasing population density, which they measure by a nematode-excreted pheromone, and decreasing food supply. Dauer larvae can resume development in response to a decrease in pheromone and increase in food concentration. We show here that two novel G protein alpha subunits (GPA-2 and GPA-3) show promoter activity in subsets of chemosensory neurons and are involved in the decision to form dauer larvae primarily through the response to dauer pheromone. Dominant activating mutations in these G proteins result in constitutive, pheromone-independent dauer formation, whereas inactivation results in reduced sensitivity to pheromone, and, under certain conditions, an alteration in the response to food. Interactions between gpa-2, gpa-3 and other genes controlling dauer formation suggest that these G proteins may act in parallel to regulate the neuronal decision making that precedes dauer formation.


2018 ◽  
Vol 115 (25) ◽  
pp. E5746-E5755 ◽  
Author(s):  
Matthew L. Hemming ◽  
Matthew A. Lawlor ◽  
Rhamy Zeid ◽  
Tom Lesluyes ◽  
Jonathan A. Fletcher ◽  
...  

Activating mutations in the KIT or PDGFRA receptor tyrosine kinases are hallmarks of gastrointestinal stromal tumor (GIST). The biological underpinnings of recurrence following resection or disease progression beyond kinase mutation are poorly understood. Utilizing chromatin immunoprecipitation with sequencing of tumor samples and cell lines, we describe the enhancer landscape of GIST, highlighting genes that reinforce and extend our understanding of these neoplasms. A group of core transcription factors can be distinguished from others unique to localized and metastatic disease. The transcription factor HAND1 emerges in metastatic disease, binds to established GIST-associated enhancers, and facilitates GIST cell proliferation and KIT gene expression. The pattern of transcription factor expression in primary tumors is predictive of metastasis-free survival in GIST patients. These results provide insight into the enhancer landscape and transcription factor network underlying GIST, and define a unique strategy for predicting clinical behavior of this disease.


Epigenomics ◽  
2020 ◽  
Author(s):  
Qijie Zhao ◽  
Jinan Guo ◽  
Yueshui Zhao ◽  
Jing Shen ◽  
Parham Jabbarzadeh Kaboli ◽  
...  

Background: PD-L1 and PD-L2 are ligands of PD-1. Their overexpression has been reported in different cancers. However, the underlying mechanism of PD-L1 and PD-L2 dysregulation and their related signaling pathways are still unclear in gastrointestinal cancers. Materials & methods: The expression of PD-L1 and PD-L2 were studied in The Cancer Genome Atlas and Genotype-Tissue Expression databases. The gene and protein alteration of PD-L1 and PD-L2 were analyzed in cBioportal. The direct transcription factor regulating PD-L1/ PD-L2 was determined with ChIP-seq data. The association of PD-L1/PD-L2 expression with clinicopathological parameters, survival, immune infiltration and tumor mutation burden were investigated with data from The Cancer Genome Atlas. Potential targets and pathways of PD-L1 and PD-L2 were determined by protein enrichment, WebGestalt and gene ontology. Results: Comprehensive analysis revealed that PD-L1 and PD-L2 were significantly upregulated in most types of gastrointestinal cancers and their expressions were positively correlated. SP1 was a key transcription factor regulating the expression of PD-L1. Conclusion: Higher PD-L1 or PD-L2 expression was significantly associated with poor overall survival, higher tumor mutation burden and more immune and stromal cell populations. Finally, HIF-1, ERBB and mTOR signaling pathways were most significantly affected by PD-L1 and PD-L2 dysregulation. Altogether, this study provided comprehensive analysis of the dysregulation of PD-L1 and PD-L2, its underlying mechanism and downstream pathways, which add to the knowledge of manipulating PD-L1/PD-L2 for cancer immunotherapy.


Author(s):  
Nicole Bechmann ◽  
Graeme Eisenhofer

AbstractGermline or somatic driver mutations linked to specific phenotypic features are identified in approximately 70% of all catecholamine-producing pheochromocytomas and paragangliomas (PPGLs). Mutations leading to stabilization of hypoxia-inducible factor 2α (HIF2α) and downstream pseudohypoxic signaling are associated with a higher risk of metastatic disease. Patients with metastatic PPGLs have a variable prognosis and treatment options are limited. In most patients with PPGLs, germline mutations lead to the stabilization of HIF2α. Mutations in HIF2α itself are associated with adrenal pheochromocytomas and/or extra-adrenal paragangliomas and about 30% of these patients develop metastatic disease; nevertheless, the frequency of these specific mutations is low (1.6–6.2%). Generally, mutations that lead to stabilization of HIF2α result in distinct catecholamine phenotype through blockade of glucocorticoid-mediated induction of phenylethanolamine N-methyltransferase, leading to the formation of tumors that lack epinephrine. HIF2α, among other factors, also contributes importantly to the initiation of a motile and invasive phenotype. Specifically, the expression of HIF2α supports a neuroendocrine-to-mesenchymal transition and the associated invasion-metastasis cascade, which includes the formation of pseudopodia to facilitate penetration into adjacent vasculature. The HIF2α-mediated expression of adhesion and extracellular matrix genes also promotes the establishment of PPGL cells in distant tissues. The involvement of HIF2α in tumorigenesis and in multiple steps of invasion-metastasis cascade underscores the therapeutic relevance of targeting HIF2α signaling pathways in PPGLs. However, due to emerging resistance to current HIF2α inhibitors that target HIF2α binding to specific partners, alternative HIF2α signaling pathways and downstream actions should also be considered for therapeutic intervention.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1335
Author(s):  
Marina Mostafizar ◽  
Claudia Cortes-Pérez ◽  
Wanda Snow ◽  
Jelena Djordjevic ◽  
Aida Adlimoghaddam ◽  
...  

The transcription factor nuclear factor kappa B (NF-κB) is highly expressed in almost all types of cells. NF-κB is involved in many complex biological processes, in particular in immunity. The activation of the NF-κB signaling pathways is also associated with cancer, diabetes, neurological disorders and even memory. Hence, NF-κB is a central factor for understanding not only fundamental biological presence but also pathogenesis, and has been the subject of intense study in these contexts. Under healthy physiological conditions, the NF-κB pathway promotes synapse growth and synaptic plasticity in neurons, while in glia, NF-κB signaling can promote pro-inflammatory responses to injury. In addition, NF-κB promotes the maintenance and maturation of B cells regulating gene expression in a majority of diverse signaling pathways. Given this, the protein plays a predominant role in activating the mammalian immune system, where NF-κB-regulated gene expression targets processes of inflammation and host defense. Thus, an understanding of the methodological issues around its detection for localization, quantification, and mechanistic insights should have a broad interest across the molecular neuroscience community. In this review, we summarize the available methods for the proper detection and analysis of NF-κB among various brain tissues, cell types, and subcellular compartments, using both qualitative and quantitative methods. We also summarize the flexibility and performance of these experimental methods for the detection of the protein, accurate quantification in different samples, and the experimental challenges in this regard, as well as suggestions to overcome common challenges.


Sign in / Sign up

Export Citation Format

Share Document