scholarly journals Effect of Ag-Addition on the Catalytic and Physicochemical Properties of Ni/ZrO2 Catalyst in Oxy-Steam Reforming of CH4 and LNG Processes

Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 855
Author(s):  
Magdalena Mosinska ◽  
Natalia Stepinska ◽  
Karolina Chalupka ◽  
Waldemar Maniukiewicz ◽  
Malgorzata I. Szynkowska ◽  
...  

This work presents, for the first time, the catalytic studies of bimetallic Ag-Ni catalysts in the oxy-steam reforming (OSR) of liquefied natural gas (LNG) to hydrogen generation. The physicochemical properties of monometallic Ni and bimetallic catalysts were investigated using various techniques, such as: BET, TPR-H2, TPD-NH3, XRD, TG and SEM-EDS. The catalytic studies showed that the promotion of 20% Ni/ZrO2 catalyst by silver (by 1 or 2 wt.%) improves the efficiency of the produced hydrogen in the oxy-steam reforming of LNG at high temperature. The promotional effect of silver on the reducibility of a Ni/ZrO2 catalyst has been proven. The interactions between Ag and Ni have been proven, and explain the catalytic activity of the catalysts in the investigated processes. TG-DTA-MS results obtained for the spent catalysts proved that the small addition of silver to monometallic nickel catalyst reduces the amount of the carbon deposit formed on the catalyst surface during the oxy-steam reforming of LNG process. Obtained results in this work confirmed that liquid natural gas processing may become an alternative to fossil fuels and confirmed the validity of the hydrogen production via oxy-steam reforming of LNG.

Author(s):  
Xiaosong Zhang ◽  
Hongguang Jin

This paper proposes a multi-input chemical looping hydrogen generation system (MCLH), which generates hydrogen, through the use of natural gas and coal. In this system, a new type of oven, burning coal instead of natural gas as heating resource for hydrogen production reaction, is adopted. Coal can be converted to hydrogen indirectly without gasification. Benefits from the chemical looping process, the CO2 can be captured without energy penalty. With the same inputs of fuel, the new system can product about 16% more hydrogen than that of individual systems. As a result, the energy consumption of the hydrogen production is about 165J/mol-H2. Based on the exergy analyses, it is disclosed that the integration of synthetic utilization of natural gas and coal plays a significant role in reducing the exergy destruction of the MCLH system. The promising results obtained may lead to a clean coal technology that will utilize natural gas and coal more efficiently and economically.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1401
Author(s):  
Pawel Mierczynski ◽  
Magdalena Mosinska ◽  
Waldemar Maniukiewicz ◽  
Krasimir Vasilev ◽  
Malgorzata Iwona Szynkowska-Jozwik

This work presents, for the first time, the comparative physicochemical and reactivity studies of a range of bimetallic Pt-Ni, Pd-Ni, Ru-Ni, and Ag-Ni catalysts in the oxy-steam reforming (OSR) of liquefied natural gas (LNG) reaction towards hydrogen generation. In order to achieve the intended purpose of this work, a binary oxide CeO2·ZrO2 (1:2) support was prepared via a co-precipitation method. The catalysts’ physicochemical properties were studied using X-ray diffraction (XRD), BET, TPR-H2, TPD-NH3, SEM-EDS and XPS methods. The highest activity in the studied process was exhibited by the 1%Pt-5%Ni catalyst supported on CeO2·ZrO2 (1:2) system. The highest activity of this system is explained by the specific interactions occurring between the components of the active phase and between the components of the active phase and the carrier itself. The activity results showed that this catalytic system exhibited above 71% of the methane conversion at 600 °C and 60% yield of hydrogen formation. The results of this work demonstrate that the Pt-Ni and Ru-Ni catalytic systems hold promise to be applied in the production of hydrogen to power solid oxide fuel cells.


Author(s):  
Maria Gribova ◽  
Lutz Giese

The fossil fuels used to provide energy, such as coal, crude oil and natural gas, are largely responsible for carbon dioxide emissions and other so-called greenhouse gases. Hydrogen gas (H2) can make a key contribution to decarbonization. It can be produced using various processes. Several processes are available to produce hydrogen, such as (i) steam reforming, (ii) cracking process or (iii) electrolysis. Depending on the source of origin, there is a distinction made between different “colours”. Gray, blue, turquoise, yellow and green hydrogen is avail­able, the latter made using Renewable Energies. However, items such as (i) possible variants of hydrogen, (ii) leading export countries or (iii) provision paths to be preferred in the future will be discussed in this paper.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 359
Author(s):  
Borja Ferreiro ◽  
Jose Andrade ◽  
Carlota Paz-Quintáns ◽  
Purificación López-Mahía ◽  
Soledad Muniategui-Lorenzo

Currently, gas chromatography is the most common analytical technique for natural gas (NG) analysis as it offers very precise results, with very low limits of detection and quantification. However, it has several drawbacks, such as low turnaround times and high cost per analysis, as well as difficulties for on-line implementation. With NG applications rising, mostly thanks to its reduced gaseous emissions in comparison with other fossil fuels, the necessity for more versatile, fast, and economic analytical methods has augmented. This work summarizes the latest advances to determine the composition and physico-chemical properties of regasified liquid natural gas, focusing on infrared spectroscopy-based techniques, as well as on data processing (chemometric techniques), necessary to obtain adequate predictions of NG properties.


Author(s):  
J. Nowotny ◽  
T. N. Veziroglu

The present work considers the impact of hydrogen fuel on the environment within the cycles of its generation and combustion. Hydrogen has been portrayed by the media as a fuel that is environmentally clean because its combustion results in the formation of harmless water. However, hydrogen first must be generated. The effect of hydrogen generation on the environment depends on the production process and the related byproducts. Hydrogen available on the market at present is mainly generated by using steam reforming of natural gas, which is a fossil fuel. Its byproduct is CO2, which is a greenhouse gas and its emission results in global warming and climate change. Therefore, hydrogen generated from fossil fuels is contributing to global warming to the similar extent as direct combustion of the fossil fuels. On the other hand hydrogen obtained from renewable energy, such solar energy, is environmentally clean during the cycles of its generation and combustion. Consequently, the introduction of hydrogen economy must be accompanied by the development of hydrogen that is environmentally friendly. The present work considers several aspects related to the generation and utilisation of hydrogen obtained by steam reforming and solar energy conversion (solar-hydrogen).


Author(s):  
Basel Al-Akkad ◽  
Mohamed Almodaris ◽  
Elliot Howard ◽  
Jocin Abraham ◽  
Sara Khorasani ◽  
...  

This paper presents a thermo-economic assessment of three different hydrogen production processes using fossil fuels as feedstock. First, the paper provides process-step level energy and cost analysis for the solar reforming of natural gas. The same analysis is given for the solar cracking of natural gas. The results are compared with the thermo-economic process-step analysis of the steam reforming process. Based on the benchmark results, the paper discusses these three processes with respect to their economic viability. The data for the analysis is collected from literature, various vendors, and personal communications with people from industry and universities. The results are presented for unit hydrogen production by each technique and compared with the market price for hydrogen. An energy balance around each process-step is made to reveal the energy intensity of each process. Although the results show that the steam reforming of methane is still the most economical pathway for hydrogen production, it is only valid when the sequestration, storage, and transportation of hazardous emissions are not taken into account. Finally, this paper provides some ideas for the improvement of the most environmentally friendly hydrogen production technique; the solar cracking of natural gas.


2015 ◽  
Vol 17 (1) ◽  
pp. 11 ◽  
Author(s):  
Siti Alimah ◽  
Djati Hoesen Salimy

ABSTRAK ANALISIS PASOKAN PANAS PADA PRODUKSI HIDROGEN PROSES STEAM REFORMING KONVENSIONAL DAN NUKLIR. Telah dilakukan analisis pasokan energi panas pada produksi hidrogen dengan proses steam reforming gas alam. Tujuan studi adalah untuk memahami sistem pasokan energi panas konvensional dan dengan nuklir. Metodologi yang digunakan adalah kajian literatur dan analisis berdasar perbandingan. Hasil studi menunjukkan bahwa proses dengan sumber panas bahan bakar fosil (gas alam) mampu memberikan kondisi operasi optimum temperatur 850-900oC dan tekanan 2-3 MPa, serta dengan perpindahan panas didominasi oleh perpindahan panas radiasi, sehingga fluks panas yang dapat dicapai pada tabung katalisator relatif tinggi (50-80 kW/m2) dan menghasilkan efisiensi thermal yang tinggi yaitu sekitar 85%. Sedang pada sistem dengan energi nuklir, karena tuntutan keselamatan, proses beroperasi pada kondisi yang kurang optimum temperatur 800-850oC dan tekanan 4,5 MPa, serta dengan perpindahan panas didominasi oleh perpindahan panas konveksi, sehingga fluks panas yang dapat dicapai pada tabung katalisator jauh lebih rendah (10-20 kW/m2) dan menghasilkan efisiensi thermal yang rendah sekitar 50%. Modifikasi reformer dan utilisasi panas mampu meningkatkan fluks panas sampai 40 kW/m2 sehingga efisiensi thermal dapat mencapai 78%. Meskipun demikian, aplikasi energi nuklir untuk produksi hidrogen dengan proses steam reforming mampu menghemat pembakaran bahan bakar fosil yang berimplikasi pada potensi penurunan laju emisi CO2 ke lingkungan. Kata kunci: produksi hidrogen, steam reforming, reformer, HTGR ABSTRACT HEAT SUPPLY ANALYSIS OF STEAM REFORMING HYDROGEN PRODUCTION PROCESS IN CONVENTIONAL AND NUCLEAR. The analysis of heat energy supply in the production of hydrogen by natural gas steam reforming process has been done. The aim of the study is to compare the energy supply system of conventional and nuclear heat. Methodology used in this study is an assessment of literature and analysis based on the comparisons. The study shows that the heat sources of fossil fuels (natural gas) is able to provide optimum operating conditions of temperature and pressure of 850-900oC and 2-3 MPa, as well as the heat transfer is dominated by radiation heat transfer, so that the heat flux that can be achieved on the catalyst tube relatively high (50-80 kW/m2) and provide high thermal efficiency of about 85%. While in the system with nuclear energy, due to the demands of safety, process operating at less than optimum conditions of temperature and pressure of 800-850oC and 4.5 MPa, as well as the heat transfer is dominated by convection heat transfer, so that the heat flux that can be achieved catalyst tube is relatively low (10- 20 kW/m2) and it provides a low thermal efficiency of about 50%. Modifications of reformer and heat utilization can increase the heat flux up to 40 kW/m2 so that the thermal efficiency can reach 78%. Nevertheless, the application of nuclear energy to hydrogen production with steam reforming process is able to reduce the burning of fossil fuels which has implications for the potential decrease in the rate of CO2 emissions into the environment. Keywords: hydrogen production, steam reforming, reformer, HTGR 


Sign in / Sign up

Export Citation Format

Share Document