scholarly journals Production of Biodiesel from Brown Grease

Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1189 ◽  
Author(s):  
Mirit Kolet ◽  
Daniel Zerbib ◽  
Faina Nakonechny ◽  
Marina Nisnevitch

Among the renewable energy sources is biodiesel. This fuel is usually produced by catalytic transesterification of vegetable oils and animal fats under heating and pressure. Brown grease is a mixture of oils, fats, solids and detergents from food industry wastes that is captured in grease traps. Brown grease is classified as waste and must be treated and disposed of appropriately. It contains oils and fats that can be converted into biodiesel. However, the high concentration of free fatty acids in brown grease does not enable the use of conventional biodiesel production schemes. This study proposes a new scheme for biodiesel production from brown grease. In addition, conditions for the effective separation of a fat phase from brown grease were tested, and the composition of a fatty phase was determined for several grease traps. Esterification and transesterification of brown grease lipids were carried out with methanol, where the Lewis acids BF3 and AlCl3 were used as catalysts and the reaction was activated by ultrasound. The results show that biodiesel can be obtained from brown grease by esterification and transesterification within several minutes under ultrasonic activation at room temperature. These results open prospects for the development of efficient, low-cost and environmentally friendly biodiesel production.

Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5936
Author(s):  
Mirit Kolet ◽  
Melad Atrash ◽  
Karen Molina ◽  
Daniel Zerbib ◽  
Yael Albo ◽  
...  

Replacing fossil fuels with biodiesel enables the emission of greenhouse gases to be decreased and reduces dependence on fossil fuels in countries with poor natural resources. Biodiesel can be produced by an esterification reaction between free fatty acids (FFAs) and methanol or by transesterification of triglycerides from oils. Both reactions require homogeneous or heterogeneous catalysis. Production of biodiesel catalyzed by heterogeneous catalysts seems to be the preferred route, enabling easy product separation. As we have previously shown, the Lewis acids AlCl3 and BF3 can serve as highly efficient catalysts under ultrasonic activation. The present study focused on the development of oleic acid (OA) esterification with methanol by the same catalysts immobilized in silica matrices using the sol–gel synthesis route. During the course of immobilization, AlCl3 converts to AlCl3 × 6H2O (aluminite) and BF3 is hydrolyzed with the production of B2O3. The immobilized catalysts can be reused or involved in a continuous process. The possibility of biodiesel production using immobilized catalysts under ultrasonic activation is shown for the conversion of FFAs into biodiesel in batch and continuous mode.


2018 ◽  
Vol 34 (2) ◽  
pp. 267-297 ◽  
Author(s):  
Farrukh Jamil ◽  
Lamya Al-Haj ◽  
Ala’a H. Al-Muhtaseb ◽  
Mohab A. Al-Hinai ◽  
Mahad Baawain ◽  
...  

AbstractDue to increasing concerns about global warming and dwindling oil supplies, the world’s attention is turning to green processes that use sustainable and environmentally friendly feedstock to produce renewable energy such as biofuels. Among them, biodiesel, which is made from nontoxic, biodegradable, renewable sources such as refined and used vegetable oils and animal fats, is a renewable substitute fuel for petroleum diesel fuel. Biodiesel is produced by transesterification in which oil or fat is reacted with short chain alcohol in the presence of a catalyst. The process of transesterification is affected by the mode of reaction, molar ratio of alcohol to oil, type of alcohol, nature and amount of catalysts, reaction time, and temperature. Various studies have been carried out using different oils as the raw material; different alcohols (methanol, ethanol, butanol); different catalysts; notably homogeneous catalysts such as sodium hydroxide, potassium hydroxide, sulfuric acid, and supercritical fluids; or, in some cases, enzymes such as lipases. This article focuses on the application of heterogeneous catalysts for biodiesel production because of their environmental and economic advantages. This review contains a detailed discussion on the advantages and feasibility of catalysts for biodiesel production, which are both environmentally and economically viable as compared to conventional homogeneous catalysts. The classification of catalysts into different categories based on a catalyst’s activity, feasibility, and lifetime is also briefly discussed. Furthermore, recommendations have been made for the most suitable catalyst (bifunctional catalyst) for low-cost oils to valuable biodiesel and the challenges faced by the biodiesel industry with some possible solutions.


2018 ◽  
Vol 7 (4) ◽  
pp. 323-333
Author(s):  
Afshin Abrishamkar ◽  
Armin Franz Isenmann ◽  
Amin Abrishamkar

Abstract Glycerin (glycerol) is a co-product of biodiesel production that is widely produced and is available at a low cost. To date, various applications have been investigated and introduced for biodiesel glycerin. In this study, a number of valuable products were produced using biodiesel glycerin and formic acid as the main reactants. Allyl alcohol is one of the valuable chemicals produced from glycerin monoformate. Efficient production of this product requires successful completion of the first section of the reaction, which is an equilibrium reaction. The highest feasible yield achieved was about 83% (based on the consumption of formic acid) at 120–140°C without the addition of any catalysts. Also, the esterification reaction was further investigated at room temperature, where the equilibrium state was reached with a yield of 55% after only 4 h. Moreover, the addition of urea to the reaction with the aim of producing the other two side products, i.e. diformyl urea and glycerin carbonate, in addition to glycerin monoformate, was studied. The results showed that considerable amounts of applicable byproducts, e.g. formamid, are also produced, making the process even more economical.


Fuel ◽  
2016 ◽  
Vol 182 ◽  
pp. 34-41 ◽  
Author(s):  
Alla Piker ◽  
Betina Tabah ◽  
Nina Perkas ◽  
Aharon Gedanken

2020 ◽  
Vol 851 ◽  
pp. 184-193
Author(s):  
Thutug Rahadiant Primadi ◽  
Fauziatul Fajaroh ◽  
Aman Santoso ◽  
Nazriati ◽  
Endang Ciptawati

Until now, used cooking oil (jelantah) has not been utilized optimally. This study seeks to convert this waste into biodiesel. Used cooking oil usually contains high concentration of free fatty acids which can be converted into methyl esters through trans-esterification by methanol. This effort is in line with the increasing need for renewable energy sources. Because the waste still contains high concentrations of free fatty acids, it is necessary to think about the right process and catalyst in converting it as biodiesel. One heterogeneous catalyst that is thought to excel in biodiesel production is ferrite-based nanocomposites, namely CaO@CoFe2O4 nanoparticles. The advantages of this catalyst are: it has high reactivity, thermal and chemical stability, and can be drawn by magnetic fields. This last property facilitates the catalyst isolation at the end of the process for recycling purposes. The catalytic power is expected to increase through impregnation with alkaline earth metal oxides which have a relatively high basicity, namely CaO. The purpose of this study was to synthesize and to characterize CaO@CoFe2O4, then to study its potential catalytic in biodiesel production from used cooking oil in various weight percent of catalyst. The main steps include: (1) synthesis of CoFe2O4 by coprecipitation; (2) Impregnation of CaO into CoFe2O4 and converted to CaO@CoFe2O4; (3) Characterization of the synthesized material by XRD, BET, and SEM/EDX; (4) application of CaO@CoFe2O4 in biodiesel production from used cooking oil; (5) characterization of biodiesel produced by viscosity measurement, yield and GC-MS analysis results. Based on the results of XRD and SEM/EDX analysis, the CaO@ CoFe2O4 catalyst has been successfully synthesized. Under optimal conditions, the yield of methyl ester produced with the addition of 2% of catalyst was 80.62%.


2015 ◽  
Vol 4 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Wendi ◽  
Valentinoh Cuaca ◽  
Taslim

Biodiesel is an alternative fuel for diesel engines consisting of the alkyl monoesters from vegetable oils or animal fats. Beef tallow waste is the non-edible raw material with low cost production and the availability is huge in the cattle production. The objective of the study was to utilize beef tallow waste for biodiesel production using solid oxide catalyst which derived from the industrial eggshells. The materials calcined with temperature 900oC and time 2 hours, transformed calcium species in the shells into active CaO catalysts.The oil contained high free fatty acid (FFA) content of 1.86%. The FFA content of the oil was reduced by acid-catalyzed esterification. The product from this stage was subjected to produce biodiesel. Transesterification process reacts oil and methanol to produce methyl ester and glycerol. The produced methyl ester on the upper layer was separated from the glycerol and then washed. Effect of various process variables such as amount of catalyst and temperature were investigated. The biodiesel properties like methyl ester content, density, viscosity, and flash point was evaluated and was found to compare well with Indonesian Standard (SNI). Under the best condition, the maximum yield of 82.43% beef tallow methyl ester was obtained by using 9:1 molar ratio of methanol to beef tallow oil at 55oC, for a reaction time 1.5 hours in the presence 3 wt% of CaO catalyst. The results of this work showed that the use of beef tallow is very suitable as low cost feedstock for biodiesel production.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Srikanth Reddy Medipally ◽  
Fatimah Md. Yusoff ◽  
Sanjoy Banerjee ◽  
M. Shariff

The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.


2020 ◽  
pp. 149-159
Author(s):  
Jatinder Kataria ◽  
Saroj Kumar Mohapatra ◽  
Amit Pal

The limited fossil reserves, spiraling price and environmental impact due to usage of fossil fuels leads the world wide researchers’ interest in using alternative renewable and environment safe fuels that can meet the energy demand. Biodiesel is an emerging renewable alternative fuel to conventional diesel which can be produced from both edible and non-edible oils, animal fats, algae etc. The society is in dire need of using renewable fuels as an immediate control measure to mitigate the pollution level. In this work an attempt is made to review the requisite and access the capability of the biodiesel in improving the environmental degradation.


2019 ◽  
Vol 15 (6) ◽  
pp. 628-634
Author(s):  
Rong Liu ◽  
Jie Li ◽  
Tongsheng Zhong ◽  
Liping Long

Background: The unnatural levels of dopamine (DA) result in serious neurological disorders such as Parkinson’s disease. Electrochemical methods which have the obvious advantages of simple operation and low-cost instrumentation were widely used for determination of DA. In order to improve the measurement performance of the electrochemical sensor, molecular imprinting technique and graphene have always been employed to increase the selectivity and sensitivity. Methods: An electrochemical sensor which has specific selectivity to (DA) was proposed based on the combination of a molecular imprinting polymer (MIP) with a graphene (GR) modified gold electrode. The performance and effect of MIP film were investigated by differential pulse voltammetry (DPV) and cyclic voltammetry (CV) in the solution of 5.0 ×10-3 mol/L K3[Fe(CN)6] and K4[Fe(CN)6] with 0.2 mol/L KCl at room temperature. Results: This fabricated sensor has well repeatability and stability, and was used to determine the dopamine of urine. Under the optimized experiment conditions, the current response of the imprinted sensor was linear to the concentration of dopamine in the range of 1.0×10-7 ~ 1.0×10-5 mol/L, the linear equation was I (µA) = 7.9824+2.7210lgc (mol/L) with the detection limit of 3.3×10-8 mol/L. Conclusion: In this work, a highly efficient sensor for determination of DA was prepared with good sensitivity by GR and great selectivity of high special recognization ability by molecular imprinting membrane. This proposed sensor was used to determine the dopamine in human urine successfully.


Sign in / Sign up

Export Citation Format

Share Document