scholarly journals Underground Upgrading of the Heavy Crude Oil in Content-Saturated Sandstone with Aquathermolysis in the Presence of an Iron Based Catalyst

Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1255
Author(s):  
Sergey A. Sitnov ◽  
Irek I. Mukhamatdinov ◽  
Dmitry A. Feoktistov ◽  
Yaroslav V. Onishchenko ◽  
Vladislav A. Sudakov ◽  
...  

Increasing the efficiency of thermal recovery methods is an important and relevant task. This study is devoted to reducing heavy components (resins and asphaltenes) and quality improvement of heavy oil by catalytic hydrothermal treatment. The object of this study is a bituminous sandstone sample from the Ashal’cha reservoir. The catalytic (iron tallate) hydrothermal simulation was carried out under reservoir conditions (200°C, 30 bar). The composition and physicochemical characteristics of the products were studied using elemental and SARA analysis, MALDI, GC-MS, FT-IR. Moreover, the extracted rock is analyzed in XRD and DSA (Drop Shape Analyzer). The introduction of catalyst in combination with a hydrogen donor reduces the content of resins by 22.0%wt. with an increase in the share of saturated hydrocarbons by 27%wt. The destructive hydrogenation leads to a decrease in the sulfur content of upgrading products. This is crucial for the oil reservoirs of the Tatarstan Republic, as their crude oils are characterized by high sulfur content. According to the wettability data, the hydrophilicity of the rock surface increases due to inhibition of the coke formation after the introduction of the catalytic complex. Thus, the oil recovery factor can be increased due to the alteration of the oil-wetting properties of reservoir rocks.

2019 ◽  
Vol 6 (6) ◽  
pp. 181902 ◽  
Author(s):  
Junchen Lv ◽  
Yuan Chi ◽  
Changzhong Zhao ◽  
Yi Zhang ◽  
Hailin Mu

Reliable measurement of the CO 2 diffusion coefficient in consolidated oil-saturated porous media is critical for the design and performance of CO 2 -enhanced oil recovery (EOR) and carbon capture and storage (CCS) projects. A thorough experimental investigation of the supercritical CO 2 diffusion in n -decane-saturated Berea cores with permeabilities of 50 and 100 mD was conducted in this study at elevated pressure (10–25 MPa) and temperature (333.15–373.15 K), which simulated actual reservoir conditions. The supercritical CO 2 diffusion coefficients in the Berea cores were calculated by a model appropriate for diffusion in porous media based on Fick's Law. The results show that the supercritical CO 2 diffusion coefficient increases as the pressure, temperature and permeability increase. The supercritical CO 2 diffusion coefficient first increases slowly at 10 MPa and then grows significantly with increasing pressure. The impact of the pressure decreases at elevated temperature. The effect of permeability remains steady despite the temperature change during the experiments. The effect of gas state and porous media on the supercritical CO 2 diffusion coefficient was further discussed by comparing the results of this study with previous study. Based on the experimental results, an empirical correlation for supercritical CO 2 diffusion coefficient in n -decane-saturated porous media was developed. The experimental results contribute to the study of supercritical CO 2 diffusion in compact porous media.


2011 ◽  
Vol 236-238 ◽  
pp. 2135-2141
Author(s):  
Qi Cheng Liu ◽  
Yong Jian Liu

Molecular film displacement is a new nanofilm EOR technique. A large number of experiments show that the mechanism of molecular film displacement is different from conventional chemical displacement (polymer, surfactant, alkali and ASP displacement etc). With water solution acting as transfer medium, molecules of the filming agent develop the force to form films through electrostatic interaction, with efficient molecules deposited on the negatively charged rock surface to form ultrathin films at nanometer scale. This change the properties of reservoir surface and the interaction condition with crude oil, making the oil easily be displaced as the pores swept by the injected fluid. Thus oil recovery is enhanced. The mechanism of molecular filming agent mainly includes absorption, wettability alteration, diffusion and capillary imbibition etc.


2021 ◽  
Author(s):  
Baghir Alakbar Suleimanov ◽  
Sabina Jahangir Rzayeva ◽  
Ulviyya Tahir Akhmedova

Abstract Microbial enhanced oil recovery is considered to be one of the most promising methods of stimulating formation, contributing to a higher level of oil production from long-term fields. The injection of bioreagents into a reservoir results in the creation of oil-dicing agents along with significant amount of gases, mainly carbon dioxide. In early, the authors failed to study the preparation of self-gasified biosystems and the implementation of the subcritical region (SR) under reservoir conditions. Gasified systems in the subcritical phase have better oil-displacing properties than non-gasified systems. The slippage effect determines the behavior of gas–liquid systems in the SR under reservoir conditions. Slippage occurs more easily when the pore channel has a smaller average radius. Therefore, in a heterogeneous porous medium, the filtration profile of gasified liquids in the SR should be more uniform than for a degassed liquid. The theoretical and practical foundations for the preparation of single-phase self-gasified biosystems and the implementation of the SR under reservoir conditions have been developedSR under reservoir conditions. Based on experimental studies, the superior efficiency of oil displacement by gasified biosystems compared with degassed ones has been demonstrated. The possibility of efficient use of gasified hybrid biopolymer systems has been shown.


Author(s):  
H. Samara ◽  
T. V. Ostrowski ◽  
F. Ayad Abdulkareem ◽  
E. Padmanabhan ◽  
P. Jaeger

AbstractShales are mostly unexploited energy resources. However, the extraction and production of their hydrocarbons require innovative methods. Applications involving carbon dioxide in shales could combine its potential use in oil recovery with its storage in view of its impact on global climate. The success of these approaches highly depends on various mechanisms taking place in the rock pores simultaneously. In this work, properties governing these mechanisms are presented at technically relevant conditions. The pendant and sessile drop methods are utilized to measure interfacial tension and wettability, respectively. The gravimetric method is used to quantify CO2 adsorption capacity of shale and gas adsorption kinetics is evaluated to determine diffusion coefficients. It is found that interfacial properties are strongly affected by the operating pressure. The oil-CO2 interfacial tension shows a decrease from approx. 21 mN/m at 0.1 MPa to around 3 mN/m at 20 MPa. A similar trend is observed in brine-CO2 systems. The diffusion coefficient is observed to slightly increase with pressure at supercritical conditions. Finally, the contact angle is found to be directly related to the gas adsorption at the rock surface: Up to 3.8 wt% of CO2 is adsorbed on the shale surface at 20 MPa and 60 °C where a maximum in contact angle is also found. To the best of the author’s knowledge, the affinity of calcite-rich surfaces toward CO2 adsorption is linked experimentally to the wetting behavior for the first time. The results are discussed in terms of CO2 storage scenarios occurring optimally at 20 MPa.


2021 ◽  
Vol 888 ◽  
pp. 111-117
Author(s):  
Yi Zhao ◽  
De Yin Zhao ◽  
Rong Qiang Zhong ◽  
Li Rong Yao ◽  
Ke Ke Li

With the continuous exploitation of most reservoirs in China, the proportion of heavy oil reservoirs increases, and the development difficulty is greater than that of conventional reservoirs. In view of the important subject of how to improve the recovery factor of heavy oil reservoir, the thermal recovery technology (hot water flooding, steam flooding, steam assisted gravity drainage SAGD and steam huff and puff) and cold recovery technology (chemical flooding, electromagnetic wave physical flooding and microbial flooding) used in the development of heavy oil reservoir are summarized. The principle of action is analyzed, and the main problems restricting heavy oil recovery are analyzed The main technologies of heavy oil recovery are introduced from the aspects of cold recovery and hot recovery. Based on the study of a large number of literatures, and according to the development trend of heavy oil development, suggestions and prospects for the future development direction are put forward.


2021 ◽  
pp. 91-107
Author(s):  
E. A. Turnaeva ◽  
E. A. Sidorovskaya ◽  
D. S. Adakhovskij ◽  
E. V. Kikireva ◽  
N. Yu. Tret'yakov ◽  
...  

Enhanced oil recovery in mature fields can be implemented using chemical flooding with the addition of surfactants using surfactant-polymer (SP) or alkaline-surfactant-polymer (ASP) flooding. Chemical flooding design is implemented taking into account reservoir conditions and composition of reservoir fluids. The surfactant in the oil-displacing formulation allows changing the rock wettability, reducing the interfacial tension, increasing the capillary number, and forming an oil emulsion, which provides a significant increase in the efficiency of oil displacement. The article is devoted with a comprehensive study of the formed emulsion phase as a stage of laboratory selection of surfactant for SP or ASP composition. In this work, the influence of aqueous phase salinity level and the surfactant concentration in the displacing solution on the characteristics of the resulting emulsion was studied. It was shown that, according to the characteristics of the emulsion, it is possible to determine the area of optimal salinity and the range of surfactant concentrations that provide increased oil displacement. The data received show the possibility of predicting the area of effectiveness of ASP and SP formulations based on the characteristics of the resulting emulsion.


2010 ◽  
Author(s):  
Weiqiang Li ◽  
Daulat D. Mamora

Abstract Steam Assisted Gravity Drainage (SAGD) is one successful thermal recovery technique applied in the Athabasca oil sands in Canada to produce the very viscous bitumen. Water for SAGD is limited in supply and expensive to treat and to generate steam. Consequently, we conducted a study into injecting high-temperature solvent instead of steam to recover Athabasca oil. In this study, hexane (C6) coinjection at condensing condition is simulated using CMG STARS to analyze the drainage mechanism inside the vapor-solvent chamber. The production performance is compared with an equivalent steam injection case based on the same Athabasca reservoir condition. Simulation results show that C6 is vaporized and transported into the vapor-solvent chamber. At the condensing condition, high temperature C6 reduces the viscosity of the bitumen more efficiently than steam and can displace out all the original oil. The oil production rate with C6 injection is about 1.5 to 2 times that of steam injection with oil recovery factor of about 100% oil initially-in-place. Most of the injected C6 can be recycled from the reservoir and from the produced oil, thus significantly reduce the solvent cost. Results of our study indicate that high-temperature solvent injection appears feasible although further technical and economic evaluation of the process is required.


2021 ◽  
Author(s):  
Bo Wang ◽  
Jens-Olaf Delfs ◽  
Christof Beyer ◽  
Sebastian Bauer

<p>High-temperature aquifer thermal energy storage (HT-ATES) in the geological subsurface will affect the temperature distribution in and close to the storage site, with potential impacts on groundwater flow and biogeochemistry. Quantification of the subsurface space affected by a HT-ATES operation is thus required as one basis for urban subsurface space planning, which would allow to address potential competitive and conflicting uses of the urban subsurface. Therefore, this study shows a quantitative evaluation of induced thermal impacts and subsurface space required for a synthetic ATES operated at varying temperature levels.</p><p>A hypothetic seasonal HT-ATES operation is simulated using the coupled groundwater flow and heat transport code OpenGeoSys. A well doublet system consisting of fully screened “warm” and “cold” wells 500 m apart is used for the storage operation. A sandy aquifer typical for the North German Basin at a depth of 110 m and with a thickness of 20 m in between two confining impermeable layers is used as storage formation. Seasonal cyclic storage is simulated for 20 years, assuming charging and discharging for six months each. During charging, water with the aquifer background temperature of 13°C is extracted at the "cold" well, heated to 70°C and reinjected at the “warm” well using a pumping rate of 30 m³/h. During discharging, the stored hot water is retrieved at the "warm" well using the same pumping rate and reinjected at the “cold” well after heat extraction at aquifer background temperature.</p><p>The simulation results show that during a single storage cycle using a storage temperature of 70°C 7.51 GWh of thermal energy is injected, of which 4.79 GWh can be retrieved. This corresponds to a thermal recovery factor of 63.8% and thus an effective storage capacity of 0.43 kWh/m<sup>3</sup>/K can be deduced in relation to the heat capacity of the storage medium. For storage temperatures of 18°C, 30°C and 50°C, the effective storage capacity is 0.56 kWh/m<sup>3</sup>/K, 0.55 kWh/m<sup>3</sup>/K and 0.49 kWh/m<sup>3</sup>/K, respectively. By delineating the subsurface volume with a temperature increase larger than 1°C, the subsurface space used for and affected by the storage operation at the storage temperature of 70 °C is determined to be 10.56 million m³. In relation to the retrieved thermal energy, a subsurface volume of 2.2 m<sup>3 </sup>is thus required to retrieve one kWh of heat energy at 70 °C injection temperature. At lower temperatures of 18°C, 30°C and 50°C, the subsurface space required is 1.77 m<sup>3</sup>/kWh, 1.54 m<sup>3</sup>/kWh and 1.76 m<sup>3</sup>/kWh, respectively. The lower effective storage capacity and the relatively larger required space, which correspond to a lower thermal recovery factor, are caused by induced thermal convection and higher heat losses by conduction at higher temperatures.</p>


2021 ◽  
Author(s):  
Xianjun Wang ◽  
Xiangbin Liu ◽  
Borui Li ◽  
Qiang Yin ◽  
Zhonglian Han ◽  
...  

Abstract The reservoir of Daqing Heidimiao Oilfield (permeability 1736×10−3μm2) contains heavy oil, with the average viscosity of 3306 mPa•s. It is developed by steam flooding and steam huff and puff, however, the recovery rate is only 14.6%. Therefore, the multi-component thermal fluid huff-and-puff technology is applied to, dealing with pertinent problems such as gas channeling, corrosion and oil pump lock in the process so as to improve oil recovery and production. Mechanism: Cooling by water, the ultra-high temperature gas generated via combustion of diesel or natural gas with air produces a multi-component thermal fluid containing CO2,N2 and vapor, combining the advantages of gas absorption and thermal recovery. Simulation: A multi-component and multi-phase percolation model is built to optimize the huff-and-puff parameters including composition ratio, temperature and injection volume. Supporting techniques: a high temperature oil-and-acid resistant foam system to form a precedent-blocking slug and automatically adjust the huff-and-puff profile. a dedicated low-cost and high-efficiency corrosion inhibitor system to realize corrosion-resistance. a four-node down-hole gas-liquid separation device to increase efficiency. The comprehensive reduced-viscosity rate is more than 30%; high-pressure air chambers, ranging from 0.2 to 2.0MPa, are formed for elastic energy replenishment. Field tests show the average annual oil increase per well is about 3800 barrels, with the highest being about 7200 barrels. The numerical simulation results show that the optimal composition ratio (N2: CO2: vapor) is 5:1:1.5, that the best injection amount is 30∼50×104Nm3 and that the injection temperature is preferably 280 ∼ 300 °C. The oil-and-acid resistant foaming agent has improved recovery efficiency, as a significantly improved profile of gas absorption, and the oil extraction degree increases by about 31.5%. High temperature corrosion is prevented, through intermittent injection of high-temperature-resistant corrosion inhibitor (corrosion inhibition rate 70.5% at 350 °C), and the frequency of pipeline corrosion is reduced averagely by 98.5%. Air-lock in pump vanishes via gas-liquid separation devise, with the average indoor pump efficiency increases by more than 50% (gas-liquid ratio ≤3000m3/m3)and the one in field test increases from less than 20% to over 45%. More importantly, the maintenance period has reached 662d. This technology has been applied to 98 wells in Daqing to date, 95 of which are stimulated successfully. The multi-component thermal fluid huff-and-puff technology solves the problems such as gas channeling, corrosion and air-lock in pumps through supporting techniques and the synergism of steam flooding and thermal recovery to enhance oil recovery and can be used as a superseded technology after steam huff-and-puff treatment to increase the EUR, especially for heavy oil reservoirs with medium and high permeability.


Sign in / Sign up

Export Citation Format

Share Document