scholarly journals Oxygen-Deficient WO3/TiO2/CC Nanorod Arrays for Visible-Light Photocatalytic Degradation of Methylene Blue

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1349
Author(s):  
Liaochuan Jiang ◽  
Xingyuan Gao ◽  
Shaoling Chen ◽  
Jangam Ashok ◽  
Sibudjing Kawi

At present, TiO2 is one of the most widely used photocatalytic materials. However, the narrow response range to light limits the photocatalytic performance. Herein, we reported a successful construction of self-doped R-WO3/R-TiO2/CC nanocomposites on flexible carbon cloth (CC) via electrochemical reduction to increase the oxygen vacancies (Ovs), resulting in an enhanced separation efficiency of photo-induced charge carriers. The photocurrent of R-WO3/R-TiO2/CC at −1.6 V (vs. SCE) was 2.6 times higher than that of WO3/TiO2/CC, which suggested that Ovs could improve the response to sunlight. Moreover, the photocatalytic activity of R-WO3/TiO2/CC was explored using methylene blue (MB). The degradation rate of MB could reach 68%, which was 1.3 times and 3.8 times higher than that of WO3/TiO2/CC and TiO2/CC, respectively. Furthermore, the solution resistance and charge transfer resistance of R-WO3/R-TiO2/CC were obviously decreased. Therefore, the electrochemical reduction of nanomaterials enabled a promoted separation of photogenerated electron–hole pairs, leading to high photocatalytic activity.

2020 ◽  
Vol 10 (9) ◽  
pp. 3238
Author(s):  
Min Liu ◽  
Guangxin Wang ◽  
Panpan Xu ◽  
Yanfeng Zhu ◽  
Wuhui Li

In this study, the Ag3PO4/SnO2 heterojunction on carbon cloth (Ag3PO4/SnO2/CC) was successfully fabricated via a facile two-step process. The results showed that the Ag3PO4/SnO2/CC heterojunction exhibited a remarkable photocatalytic performance for the degradation of Rhodamine B (RhB) and methylene blue (MB), under visible light irradiation. The calculated k values for the degradation of RhB and MB over Ag3PO4/SnO2/CC are 0.04716 min−1 and 0.04916 min−1, which are higher than those calculated for the reactions over Ag3PO4/SnO2, Ag3PO4/CC and SnO2/CC, respectively. The enhanced photocatalytic activity could mainly be attributed to the improved separation efficiency of photogenerated electron-hole pairs, after the formation of the Ag3PO4/SnO2/CC heterojunction. Moreover, carbon cloth with a large specific surface area and excellent conductivity was used as the substrate, which helped to increase the contact area of dye solution with photocatalysts and the rapid transfer of photogenerated electrons. Notably, when compared with the powder catalyst, the catalysts supported on carbon cloth are easier to quickly recycle from the pollutant solution, thereby reducing the probability of recontamination.


2011 ◽  
Vol 194-196 ◽  
pp. 385-388
Author(s):  
Hong Juan Wang ◽  
Feng Qiang Sun ◽  
Ming Zhong Ren ◽  
Qing Wei Guo

Nanoporous SnO2with high photocatalytic activity has been successfully prepared by a photochemical method, using SnCl2aqueous solution as a precursor. The as-synthesized sample was characterized by XRD, N2 adsorption-desorption and UV-vis. The photocatalytic activity of the sample was evaluated by degrading methylene blue (MB) aqueous solution under the UV light source and was compared with that of the commercial titania (Degussa P25). The results showed that the produced SnO2can degrade MB solution quickly and has comparative photocatalytic performance with P25 for degrading MB. This facile method supplies an effective way to prepare SnO2photocatalyst.


2020 ◽  
Vol 850 ◽  
pp. 35-40
Author(s):  
Pāvels Rodionovs ◽  
Jānis Grabis

In this study ZnO photocatalysts with different loading of Eu2O3 and Sm2O3 were prepared vie microwave-assisted hydrothermal method. The prepared samples were investigated by using XRD, SEM and BET analysis. The photocatalytic activity was determined by degradation of methylene blue (MB) under Osram Vitalux illumination. Prepared ZnO photocatalysts shown high photocatalytic activity under solar light simulated radiation. After 30 minute of irradiation more than 95 % of initial MB solution was degraded. The effect of pH and photocatalyst dosage was investigated. The reusability of photocatalysts was also studied.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4481 ◽  
Author(s):  
Rosa M. Huertas ◽  
Maria C. Fraga ◽  
João G. Crespo ◽  
Vanessa J. Pereira

This work described a new sustainable method for the fabrication of ceramic membranes with high photocatalytic activity, through a simple sol-gel route. The photocatalytic surfaces, prepared at low temperature and under solvent-free conditions, exhibited a narrow pore size distribution and homogeneity without cracks. These surfaces have shown a highly efficient and reproducible behavior for the degradation of methylene blue. Given their characterization results, the microfiltration photocatalytic membranes produced in this study using solvent-free conditions are expected to effectively retain microorganisms, such as bacteria and fungi that could then be inactivated by photocatalysis.


Catalysts ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 848
Author(s):  
Cheng Gong ◽  
Shiyin Xu ◽  
Peng Xiao ◽  
Feifan Liu ◽  
Yunhui Xu ◽  
...  

A hybrid material of indium tin-oxide (ITO) wrapped titanium dioxide and reduced graphene oxide (ITO-rGO and TiO2) was prepared using a facile hydrothermal technique. TiO2 nanorods were in situ grown on the surface of rGO (rGO and TiO2), and which was then assembled onto ITO substrate layer by layer with formation of a 3D structure. ITO-rGO and TiO2 exhibit low charge transfer resistance at the electrode-electrolyte interface and have good photoresponsive ability. Methylene blue (MB) can be effectively adsorbed and enriched onto ITO-rGO and TiO2 surface. The adsorption kinetics and thermodynamics of ITO-rGO and TiO2 were evaluated, showing that the exothermic and entropy-driven reaction were the main thermodynamic processes, and the Langmuir isotherm was the ideal model for adsorption fitting. Meanwhile, ITO greatly improved degradation of rGO and TiO2 because electrons can be collected by ITO before recombination and MB can easily enter into the 3D structure of rGO and TiO2. The highest photodegradation rate of MB reached 93.40% for ITO-rGO and TiO2 at pH 9. Additionally, ITO-rGO and TiO2 successfully solved the problems of being difficult to recycle and causing secondary pollution of traditional TiO2 catalysts. Therefore, ITO-rGO and TiO2 may be a potential photocatalyst for degrading organic pollutants in water.


RSC Advances ◽  
2015 ◽  
Vol 5 (35) ◽  
pp. 27933-27939 ◽  
Author(s):  
Qingyan Nong ◽  
Min Cui ◽  
Hongjun Lin ◽  
Leihong Zhao ◽  
Yiming He

The coupling of FeVO4 nanorods with g-C3N4 promotes the separation efficiency of photogenerated electron–hole pairs, and subsequently enhances its photocatalytic activity in rhodamine photodegradation.


RSC Advances ◽  
2015 ◽  
Vol 5 (115) ◽  
pp. 94887-94894 ◽  
Author(s):  
Meng Wang ◽  
Ziyu Qiao ◽  
Minghao Fang ◽  
Zhaohui Huang ◽  
Yan'gai Liu ◽  
...  

1.5% Bi2WO6:Er3+ exhibited highest photocatalytic activity as the separation efficiency of the photogenerated electron–hole pairs is enhanced.


2019 ◽  
Vol 20 (5) ◽  
pp. 253-262
Author(s):  
Roonak Abdul Salam A.Alkareem

In this work, copper oxide (CuO) nano-rice structure was prepared by hydrothermal method. The prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), and UV-visible spectrophotometer. CuO nano-rice structure showed high photocatalytic activity towards degradation of methylene blue (MB). Hydrothermally growth of CuO provided uniformly distributed nano-rice structures with high degradation efficiency (90.41%) and rate constant (kt) 16.6 × 10-2 min-1 for methylene blue degradation.


RSC Advances ◽  
2016 ◽  
Vol 6 (68) ◽  
pp. 63984-63990 ◽  
Author(s):  
Lu Ma ◽  
Hong Han ◽  
Lun Pan ◽  
Muhammad Tahir ◽  
Li Wang ◽  
...  

Ag3PO4 QDs sensitized and Ti3+-doped TiO2 nanosheets were fabricated, and exhibit high charge-separation efficiency and high photocatalytic activity.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 654
Author(s):  
Ziyi Wang ◽  
Wei Zhou ◽  
Xin Wang ◽  
Xueliang Zhang ◽  
Huayu Chen ◽  
...  

The photocatalytic reduction of carbon dioxide (CO2) into CO and hydrocarbon fuels has been considered as an ideal green technology for solar-to-chemical energy conversion. The separation/transport of photoinduced charge carriers and adsorption/activation of CO2 molecules play crucial roles in photocatalytic activity. Herein, tetrakis (4-carboxyphenyl) porphyrin (H2TCPP) was incorporated with different metal atoms in the center of a conjugate macrocycle, forming the metalloporphyrins TCPP-M (M = Co, Ni, Cu). The as-obtained metalloporphyrin was loaded as a cocatalyst on commercial titania (P25) to form TCPP-M@P25 (M = Co, Ni, Cu) for enhanced CO2 photoreduction. Among all of the TCPP-M@P25 (M = Co, Ni, Cu), TCPP-Cu@P25 exhibited the highest evolution rates of CO (13.6 μmol⋅g−1⋅h−1) and CH4 (1.0 μmol⋅g−1⋅h−1), which were 35.8 times and 97.0 times those of bare P25, respectively. The enhanced photocatalytic activity could be attributed to the improved photogenerated electron-hole separation efficiency, as well as the increased adsorption/activation sites provided by the metal centers in TCPP-M (M = Co, Ni, Cu). Our study indicates that metalloporphyrin could be used as a high-efficiency cocatalyst to enhance CO2 photoreduction activity.


Sign in / Sign up

Export Citation Format

Share Document