scholarly journals Highly Active CuFeAl-containing Catalysts for Selective Hydrogenation of Furfural to Furfuryl Alcohol

Catalysts ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 816 ◽  
Author(s):  
Svetlana A. Selishcheva ◽  
Andrey A. Smirnov ◽  
Alexander V. Fedorov ◽  
Olga A. Bulavchenko ◽  
Andrey A. Saraev ◽  
...  

CuFe-containing catalysts with different copper oxide content were prepared by fusion of metal salts. The obtained catalyst showed high activity in the hydrogenation of furfural to furfuryl alcohol (FA) in the batch reactor in the presence of isopropanol as a solvent at a temperature of 100 °C and a hydrogen pressure of 6.0 MPa. The yield of FA and furfural conversion are 97% and 98%, respectively. In the solvent-free reaction in the flow-type reactor; the most active catalyst Cu20Fe66Al14 leads to the 96% formation of FA with 100% conversion of furfural at liquid hourly space velocity (LHSV) = 1 h−1; 160 °C and a hydrogen pressure of 5.0 MPa during 30 h. According to the X-ray diffraction (XRD) method, the active component of the spent and fresh Cu20Fe66Al14 catalyst is the same and is represented by metallic copper and Fe3O4-type spinel. Using different methods, the formation of active sites was investigated.

2019 ◽  
Vol 19 (2) ◽  
pp. 95-103
Author(s):  
S. A. Selishcheva ◽  
A. A. Smirnov ◽  
A. V. Fedorov ◽  
D. Yu. Ermakov ◽  
Yu. K. Gulyaeva ◽  
...  

Cu- and Fe-containing catalysts were studied in the reaction of selective hydrogenation of furfural to furfuryl alcohol (FA). The catalysts were prepared by fusing the metal nitrates and reduced in situ at 250 °C in the reactor before the reaction. A batch reactor was used for the process at 150 °C and 6.0 MPa of hydrogen. The highest activity was shown to be characteristic of the Cu20Fe66Al14catalyst that provided 96 % conversion of furfural and 97 mol.% selectivity to FA. In the flow system, the furfural conversion reached 100 % and the selectivity to FA up to 95 mol.% at 160 °C and 5 MPa of hydrogen. The developed catalyst remained highly active during its continuous operation for 30 hours. The observed high activity was accounted for by the presence of stabilized disperse copper particles in the copper-iron containing catalyst.


2021 ◽  
Vol 9 ◽  
Author(s):  
Matheus O. Souza ◽  
Sergio C. Pereira ◽  
Lam Y. Lau ◽  
Leandro Soter ◽  
Marcelo M. Pereira

1,2:3,5-Di-O-isopropylidene-α-D-xylofuranose (DX) is a major component of a new bio-crude: a viscous oil presenting petroleum-friendly properties produced by the ketalization of sugarcane bagasse. This article studies DX HDO (hydrodeoxygenation) over a Pd/HBEA catalyst in a batch reactor at 250°C. The effects of hydrogen pressure from 10 to 40 bar, catalyst/DX ratio from ½ to 2, and reaction time 0–24 h were investigated. A range of conditions for complete hydrodeoxygenated DX into alkanes with a Pd/HBEA catalyst was found. In these conditions, a low coke yield with water as the principal deoxygenated product was obtained. Further, higher amounts of alkanes containing seven or more carbons (A7+) were favored at 30 bar of hydrogen pressure, Cat/DX ratio = 2, and short reaction time. Products analysis that accompanied the above variations during reaction time led to general insights into reaction pathways. First, in the presence of DX, an effective n-hexane conversion was not observed on experiments of low catalyst/DX ratio (½) or in the initial period of high Cat/DX ratio, suggesting DX is much more successful than n-hexane to compete for active sites. Then, the formation of a pool of oxygenated compounds, such as furans, ketones, and carboxylic acids, along with lighter and heavier alkanes was observed. Hence, the aforementioned oxygenates may undergo reactions, such as aldol condensation with subsequent hydrodeoxygenation reaction, generating heavier alkanes.


Author(s):  
Djaouida Allam ◽  
Salem Cheknoun ◽  
Smain Hocine

A series of catalysts constituted of mixed copper and zinc oxides supported on alumina were prepared by co-precipitation method. The cooper content was in the 10-90 wt.% range. Their catalytic behavior in the hydrogenation of carbon dioxide to methanol was investigated at high pressure (up to 75 bars). The catalysts were characterized by elemental analysis, N2-adsorption, N2O-chemisorptions, and X-ray diffraction (XRD). The catalysts showed a clear activity in the hydrogenation reaction that could be correlated to the surface area of the metallic copper and to the reaction pressure. The CuO/ZnO/Al2O3 catalyst with a Cu/Zn/Al weight ratio of 60/30/10, exhibits the highest carbon dioxide conversion and methanol selectivity. Finally, a mechanism pathway has been proposed on copper active sites of (Cu0/CuI) oxidation state. Copyright © 2019 BCREC Group. All rights reserved 


2019 ◽  
Author(s):  
Víctor Gabriel Baldovino Medrano ◽  
Karen V. Caballero ◽  
Hernando Guerrero-Amaya

Turnover rates for glycerol esterification with acetic acid over Amberlyst-35 were measured under different temperatures, reactants and active sites concentrations, and catalyst particle sizes. Data were collected in a batch reactor. Experiments were done following a sequence of factorial experimental designs.


1993 ◽  
Vol 58 (7) ◽  
pp. 1591-1599 ◽  
Author(s):  
Abd El-Aziz A. Said

Molybdenum oxide catalyst doped or mixed with (1 - 50) mole % Fe3+ ions were prepared. The structure of the original samples and the samples calcined at 400 °C were characterized using DTA, X-ray diffraction and IR spectra. Measurements of the electrical conductivity of calcined samples with and without isopropyl alcohol revealed that the conductance increases on increasing the content of Fe3+ ions up to 50 mole %. The activation energies of charge carriers were determined in presence and absence of the alcohol. The catalytic dehydration of isopropyl alcohol was carried out at 250 °C using a flow system. The results obtained showed that the doped or mixed catalysts are active and selective towards propene formation. However, the catalyst containing 40 mole % Fe3+ ions exhibited the highest activity and selectivity. Correlations were attempted to the catalyst composition with their electronic and catalytic properties. Probable mechanism for the dehydration process is proposed in terms of surface active sites.


1996 ◽  
Vol 61 (8) ◽  
pp. 1131-1140 ◽  
Author(s):  
Abd El-Aziz Ahmed Said

Vanadium oxide catalysts doped or mixed with 1-50 mole % Fe3+ ions were prepared. The structure of the original samples and those calcined from 200 up to 500 °C were characterized by TG, DTA, IR and X-ray diffraction. The SBET values and texture of the solid catalysts were investigated. The catalytic dehydration-dehydrogenation of isopropanol was carried out at 200 °C using a flow system. The results obtained showed an observable decrease in the activity of V2O5 on the addition of Fe3+ ions. Moreover, Fe2V4O13 is the more active and selective catalyst than FeVO4 spinels. The results were correlated with the active sites created on the catalyst surface.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Valentina Krylova ◽  
Mindaugas Andrulevičius

Copper sulfide layers were formed on polyamide PA 6 surface using the sorption-diffusion method. Polymer samples were immersed for 4 and 5 h in 0.15 mol⋅  solutions and acidified with HCl (0.1 mol⋅) at . After washing and drying, the samples were treated with Cu(I) salt solution. The samples were studied by UV/VIS, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) methods. All methods confirmed that on the surface of the polyamide film a layer of copper sulfide was formed. The copper sulfide layers are indirect band-gap semiconductors. The values of are 1.25 and 1.3 eV for 4 h and 5 h sulfured PA 6 respectively. Copper XPS spectra analyses showed Cu(I) bonds only in deeper layers of the formed film, while in sulfur XPS S 2p spectra dominating sulfide bonds were found after cleaning the surface with ions. It has been established by the XRD method that, beside , the layer contains as well. For PA 6 initially sulfured 4 h, grain size forchalcocite, , was  nm and fordjurleite, , it was 54.17 nm. The sheet resistance of the obtained layer varies from 6300 to 102 .


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 204
Author(s):  
Yu Li ◽  
Chumin Liang ◽  
Xunzhong Zou ◽  
Jinzhong Gu ◽  
Marina V. Kirillova ◽  
...  

Three 2D coordination polymers, [Cu2(µ4-dpa)(bipy)2(H2O)]n∙6nH2O (1), [Mn2(µ6-dpa)(bipy)2]n (2), and [Zn2(µ4-dpa)(bipy)2(H2O)2]n·2nH2O (3), were prepared by a hydrothermal method using metal(II) chloride salts, 3-(2′,4′-dicarboxylphenoxy)phthalic acid (H4dpa) as a linker, as well as 2,2′-bipyridine (bipy) as a crystallization mediator. Compounds 1–3 were obtained as crystalline solids and fully characterized. The structures of 1–3 were established by single-crystal X-ray diffraction, revealing 2D metal-organic networks of sql, 3,6L66, and hcb topological types. Thermal stability and catalytic behavior of 1–3 were also studied. In particular, zinc(II) coordination polymer 3 functions as a highly active and recoverable heterogeneous catalyst in the mild cyanosilylation of benzaldehydes with trimethylsilyl cyanide to give cyanohydrin derivatives. The influence of various parameters was investigated, including a time of reaction, a loading of catalyst and its recycling, an effect of solvent type, and a substrate scope. As a result, up to 93% product yields were attained in a catalyst recoverable and reusable system when exploring 4-nitrobenzaldehyde as a model substrate. This study contributes to widening the types of multifunctional polycarboxylic acid linkers for the design of novel coordination polymers with notable applications in heterogeneous catalysis.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3783
Author(s):  
Jian-Qing Qiu ◽  
Huan-Qing Xie ◽  
Ya-Hao Wang ◽  
Lan Yu ◽  
Fang-Yuan Wang ◽  
...  

The removal of organic pollutants using green environmental photocatalytic degradation techniques urgently need high-performance catalysts. In this work, a facile one-step hydrothermal technique has been successfully applied to synthesize a Nb2O5 photocatalyst with uniform micro-flower structure for the degradation of methyl orange (MO) under UV irradiation. These nanocatalysts are characterized by transmission and scanning electron microscopies (TEM and SEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) method, and UV-Vis diffuse reflectance spectroscopy (DRS). It is found that the prepared Nb2O5 micro-flowers presents a good crystal phases and consist of 3D hierarchical nanosheets with 400–500 nm in diameter. The surface area is as large as 48.6 m2 g−1. Importantly, the Nb2O5 micro-flowers exhibit superior catalytic activity up to 99.9% for the photodegradation of MO within 20 mins, which is about 60-fold and 4-fold larger than that of without catalysts (W/O) and commercial TiO2 (P25) sample, respectively. This excellent performance may be attributed to 3D porous structure with abundant catalytic active sites.


Author(s):  
Kaiyao Wu ◽  
Fei Chu ◽  
Yuying Meng ◽  
Kaveh Edalati ◽  
Qingsheng Gao ◽  
...  

Transition metal-based amorphous alloys have attracted increasing attention as precious-metal-free electrocatalysts for oxygen evolution reaction (OER) of water splitting due to their high macro-conductivity and abundant surface active sites. However,...


Sign in / Sign up

Export Citation Format

Share Document