scholarly journals Drosophila Accessory Gland: A Complementary In Vivo Model to Bring New Insight to Prostate Cancer

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2387
Author(s):  
Amandine Rambur ◽  
Marine Vialat ◽  
Claude Beaudoin ◽  
Corinne Lours-Calet ◽  
Jean-Marc Lobaccaro ◽  
...  

Prostate cancer is the most common cancer in aging men. Despite recent progress, there are still few effective treatments to cure its aggressive and metastatic stages. A better understanding of the molecular mechanisms driving disease initiation and progression appears essential to support the development of more efficient therapies and improve patient care. To do so, multiple research models, such as cell culture and mouse models, have been developed over the years and have improved our comprehension of the biology of the disease. Recently, a new model has been added with the use of the Drosophila accessory gland. With a high level of conservation of major signaling pathways implicated in human disease, this functional equivalent of the prostate represents a powerful, inexpensive, and rapid in vivo model to study epithelial carcinogenesis. The purpose of this review is to quickly overview the existing prostate cancer models, including their strengths and limitations. In particular, we discuss how the Drosophila accessory gland can be integrated as a convenient complementary model by bringing new understanding in the mechanisms driving prostate epithelial tumorigenesis, from initiation to metastatic formation.

Bone Research ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Navatha Shree Polavaram ◽  
Samikshan Dutta ◽  
Ridwan Islam ◽  
Arup K. Bag ◽  
Sohini Roy ◽  
...  

AbstractUnderstanding the role of neuropilin 2 (NRP2) in prostate cancer cells as well as in the bone microenvironment is pivotal in the development of an effective targeted therapy for the treatment of prostate cancer bone metastasis. We observed a significant upregulation of NRP2 in prostate cancer cells metastasized to bone. Here, we report that targeting NRP2 in cancer cells can enhance taxane-based chemotherapy with a better therapeutic outcome in bone metastasis, implicating NRP2 as a promising therapeutic target. Since, osteoclasts present in the tumor microenvironment express NRP2, we have investigated the potential effect of targeting NRP2 in osteoclasts. Our results revealed NRP2 negatively regulates osteoclast differentiation and function in the presence of prostate cancer cells that promotes mixed bone lesions. Our study further delineated the molecular mechanisms by which NRP2 regulates osteoclast function. Interestingly, depletion of NRP2 in osteoclasts in vivo showed a decrease in the overall prostate tumor burden in the bone. These results therefore indicate that targeting NRP2 in prostate cancer cells as well as in the osteoclastic compartment can be beneficial in the treatment of prostate cancer bone metastasis.


2021 ◽  
pp. 1-9
Author(s):  
Dayana Torres Valladares ◽  
Sirisha Kudumala ◽  
Murad Hossain ◽  
Lucia Carvelli

Amphetamine is a potent psychostimulant also used to treat attention deficit/hyperactivity disorder and narcolepsy. In vivo and in vitro data have demonstrated that amphetamine increases the amount of extra synaptic dopamine by both inhibiting reuptake and promoting efflux of dopamine through the dopamine transporter. Previous studies have shown that chronic use of amphetamine causes tolerance to the drug. Thus, since the molecular mechanisms underlying tolerance to amphetamine are still unknown, an animal model to identify the neurochemical mechanisms associated with drug tolerance is greatly needed. Here we took advantage of a unique behavior caused by amphetamine in <i>Caenorhabditis elegans</i> to investigate whether this simple, but powerful, genetic model develops tolerance following repeated exposure to amphetamine. We found that at least 3 treatments with 0.5 mM amphetamine were necessary to see a reduction in the amphetamine-induced behavior and, thus, to promote tolerance. Moreover, we found that, after intervals of 60/90 minutes between treatments, animals were more likely to exhibit tolerance than animals that underwent 10-minute intervals between treatments. Taken together, our results show that <i>C. elegans</i> is a suitable system to study tolerance to drugs of abuse such as amphetamines.


2009 ◽  
Vol 16 (2) ◽  
pp. 401-413 ◽  
Author(s):  
Claudio Festuccia ◽  
Giovanni Luca Gravina ◽  
Anna Maria D'Alessandro ◽  
Paola Muzi ◽  
Danilo Millimaggi ◽  
...  

One of the major obstacles in the treatment of hormone-refractory prostate cancer (HRPC) is the development of chemoresistant tumors. The aim of this study is to evaluate the role of azacitidine as chemosensitizing agent in association with docetaxel (DTX) and cisplatin using two models of aggressive prostate cancer, the 22rv1, and PC3 cell lines. Azacitidine shows antiproliferative effects associated with increased proportion of cells in G0/G1 and evident apoptosis in 22rv1 cells and increased proportion of cells in G2/M phase with the absence of acute cell killing in PC3 cells. In vivo, azacitidine (0.8 mg/kg i.p.) reduced tumor proliferation and induced apoptosis in both xenografts upmodulating the expression of p16INKA, Bax, Bak, p21/WAF1, and p27/KIP1, and inhibiting the activation of Akt activity and the expression of cyclin D1, Bcl-2, and Bcl-XL. In vitro treatments with azacitidine lead to upregulation of cleaved caspase 3 and PARP. BCl2 antagonists, such as HA-14-1, enhanced the effects of azacitidine in these two prostate cancer models. In addition, azacitidine showed synergistic effects with both DTX and cisplatin. In vivo this agent caused tumor growth delay without complete regression in xenograft systems. Azacitidine sensitized PC3 and 22rv1 xenografts to DTX and cisplatin treatments. These combinations were also tolerable in mice and superior to either agent alone. As DTX is the standard first-line chemotherapy for HRPC, the development of DTX-based combination therapies is of great interest in this disease stage. Our results provide a rationale for clinical trials on combination treatments with azacitidine in patients with hormone-refractory and chemoresistant prostate tumors.


2019 ◽  
Vol 32 (4) ◽  
pp. 259-272 ◽  
Author(s):  
Moe Tamaura ◽  
Naoko Satoh-Takayama ◽  
Miyuki Tsumura ◽  
Takaharu Sasaki ◽  
Satoshi Goda ◽  
...  

Abstract Gain-of-function (GOF) mutations in the gene for signal transducer and activator of transcription 1 (STAT1) account for approximately one-half of patients with chronic mucocutaneous candidiasis (CMC) disease. Patients with GOF-STAT1 mutations display a broad variety of infectious and autoimmune manifestations in addition to CMC, and those with severe infections and/or autoimmunity have a poor prognosis. The establishment of safe and effective treatments based on a precise understanding of the molecular mechanisms of this disorder is required to improve patient care. To tackle this problem, we introduced the human R274Q GOF mutation into mice [GOF-Stat1 knock-in (GOF-Stat1R274Q)]. To investigate the immune responses, we focused on the small intestine (SI), which contains abundant Th17 cells. Stat1R274Q/R274Q mice showed excess phosphorylation of STAT1 in CD4+ T cells upon IFN-γ stimulation, consistent with the human phenotype in patients with the R274Q mutation. We identified two subpopulations of CD4+ T cells, those with ‘normal’ or ‘high’ level of basal STAT1 protein in Stat1R274Q/R274Q mice. Upon IFN-γ stimulation, the ‘normal’ level CD4+ T cells were more efficiently phosphorylated than those from WT mice, whereas the ‘high’ level CD4+ T cells were not, suggesting that the level of STAT1 protein does not directly correlate with the level of pSTAT1 in the SI. Inoculation of Stat1R274Q/R274Q mice with Candida albicans elicited decreased IL-17-producing CD4+RORγt+ cells. Stat1R274Q/R274Q mice also excreted larger amounts of C. albicans DNA in their feces than control mice. Under these conditions, there was up-regulation of T-bet in CD4+ T cells. GOF-Stat1R274Q mice thus should be a valuable model for functional analysis of this disorder.


Molecules ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 193 ◽  
Author(s):  
Yasuyoshi Miyata ◽  
Yohei Shida ◽  
Tomoaki Hakariya ◽  
Hideki Sakai

Prostate cancer is the most common cancer among men. Green tea consumption is reported to play an important role in the prevention of carcinogenesis in many types of malignancies, including prostate cancer; however, epidemiological studies show conflicting results regarding these anti-cancer effects. In recent years, in addition to prevention, many investigators have shown the efficacy and safety of green tea polyphenols and combination therapies with green tea extracts and anti-cancer agents in in vivo and in vitro studies. Furthermore, numerous studies have revealed the molecular mechanisms of the anti-cancer effects of green tea extracts. We believe that improved understanding of the detailed pathological roles at the molecular level is important to evaluate the prevention and treatment of prostate cancer. Therefore, in this review, we present current knowledge regarding the anti-cancer effects of green tea extracts in the prevention and treatment of prostate cancer, with a particular focus on the molecular mechanisms of action, such as influencing tumor growth, apoptosis, androgen receptor signaling, cell cycle, and various malignant behaviors. Finally, the future direction for the use of green tea extracts as treatment strategies in patients with prostate cancer is introduced.


2019 ◽  
Vol 48 (1) ◽  
pp. 197-209 ◽  
Author(s):  
Hongyao Xu ◽  
Xiangjie Zou ◽  
Pengcheng Xia ◽  
Mohammad Ahmad Kamal Aboudi ◽  
Ran Chen ◽  
...  

Background: Meniscal injury is very common, and injured meniscal tissue has a limited healing ability because of poor vascularity. Platelets contain both pro- and anti-angiogenic factors, which can be released by platelet selective activation. Hypothesis: Platelets release a high level of vascular endothelial growth factor (VEGF) when they are activated by protease-activated receptor 1 (PAR1), whereas the platelets release endostatin when they are activated by protease-activated receptor 4 (PAR4). The PAR1-treated platelets enhance the proliferation of meniscal cells in vitro and promote in vivo healing of wounded meniscal tissue. Study Design: Controlled laboratory study. Method: Platelets were isolated from human blood and activated with different reagents. The released growth factors from the activated platelets were determined by immunostaining and enzyme-linked immunosorbent assay. The effects of the platelets with different treatments on meniscal cells were tested by an in vitro model of cell culture and an in vivo model of wounded meniscal healing. Results: The results indicated that platelets contained both pro- and antiangiogenic factors including VEGF and endostatin. In unactivated platelets, VEGF and endostatin were contained inside of the platelets. Both VEGF and endostatin were released from the platelets when they were activated by thrombin. However, only VEGF was released from the platelets when they were activated by PAR1, and only endostatin was released from the platelets when they were activated by PAR4. The rat meniscal cells grew much faster in the medium that contained PAR1-activated platelets than in the medium that contained either PAR4-activated platelets or unactivated platelets. The wounds treated with PAR1-activated platelets healed faster than those treated with either PAR4-activated platelets or unactivated platelets. Many blood vessel–like structures were found in the wounded menisci treated with PAR1-activated platelets. Conclusion: The PAR1-activated platelets released high levels of VEGF, which increased the proliferation of rat meniscal cells in vitro, enhanced the vascularization of menisci in vivo, and promoted healing of wounded menisci. Clinical Relevance: Our results suggested that selective activated platelets can be used clinically to enhance healing of wounded meniscal tissue.


Bone ◽  
2000 ◽  
Vol 27 (4) ◽  
pp. 42
Author(s):  
M Howard ◽  
J Fisher ◽  
J Schmitt ◽  
G Risbridger ◽  
P Choong

Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1868 ◽  
Author(s):  
Oihane Erice ◽  
Adrian Vallejo ◽  
Mariano Ponz-Sarvise ◽  
Michael Saborowski ◽  
Arndt Vogel ◽  
...  

Cholangiocarcinoma (CCA) is a genetically and histologically complex disease with a highly dismal prognosis. A deeper understanding of the underlying cellular and molecular mechanisms of human CCA will increase our current knowledge of the disease and expedite the eventual development of novel therapeutic strategies for this fatal cancer. This endeavor is effectively supported by genetic mouse models, which serve as sophisticated tools to systematically investigate CCA pathobiology and treatment response. These in vivo models feature many of the genetic alterations found in humans, recapitulate multiple hallmarks of cholangiocarcinogenesis (encompassing cell transformation, preneoplastic lesions, established tumors and metastatic disease) and provide an ideal experimental setting to study the interplay between tumor cells and the surrounding stroma. This review is intended to serve as a compendium of CCA mouse models, including traditional transgenic models but also genetically flexible approaches based on either the direct introduction of DNA into liver cells or transplantation of pre-malignant cells, and is meant as a resource for CCA researchers to aid in the selection of the most appropriate in vivo model system.


Sign in / Sign up

Export Citation Format

Share Document