scholarly journals Detection of Novel Potential Regulators of Stem Cell Differentiation and Cardiogenesis through Combined Genome-Wide Profiling of Protein-Coding Transcripts and microRNAs

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2477
Author(s):  
Rui Machado ◽  
Agapios Sachinidis ◽  
Matthias E. Futschik

In vitro differentiation of embryonic stem cells (ESCs) provides a convenient basis for the study of microRNA-based gene regulation that is relevant for early cardiogenic processes. However, to which degree insights gained from in vitro differentiation models can be readily transferred to the in vivo system remains unclear. In this study, we profiled simultaneous genome-wide measurements of mRNAs and microRNAs (miRNAs) of differentiating murine ESCs (mESCs) and integrated putative miRNA-gene interactions to assess miRNA-driven gene regulation. To identify interactions conserved between in vivo and in vitro, we combined our analysis with a recent transcriptomic study of early murine heart development in vivo. We detected over 200 putative miRNA–mRNA interactions with conserved expression patterns that were indicative of gene regulation across the in vitro and in vivo studies. A substantial proportion of candidate interactions have been already linked to cardiogenesis, supporting the validity of our approach. Notably, we also detected miRNAs with expression patterns that closely resembled those of key developmental transcription factors. The approach taken in this study enabled the identification of miRNA interactions in in vitro models with potential relevance for early cardiogenic development. Such comparative approaches will be important for the faithful application of stem cells in cardiovascular research.

2020 ◽  
Vol 15 (5) ◽  
pp. 414-427
Author(s):  
Seep Arora ◽  
Akshaya Srinivasan ◽  
Chak Ming Leung ◽  
Yi-Chin Toh

Mesenchymal stem cells (MSCs) are multipotent stromal cells, with the ability to differentiate into mesodermal (e.g., adipocyte, chondrocyte, hematopoietic, myocyte, osteoblast), ectodermal (e.g., epithelial, neural) and endodermal (e.g., hepatocyte, islet cell) lineages based on the type of induction cues provided. As compared to embryonic stem cells, MSCs hold a multitude of advantages from a clinical translation perspective, including ease of isolation, low immunogenicity and limited ethical concerns. Therefore, MSCs are a promising stem cell source for different regenerative medicine applications. The in vitro differentiation of MSCs into different lineages relies on effective mimicking of the in vivo milieu, including both biochemical and mechanical stimuli. As compared to other biophysical cues, such as substrate stiffness and topography, the role of fluid shear stress (SS) in regulating MSC differentiation has been investigated to a lesser extent although the role of interstitial fluid and vascular flow in regulating the normal physiology of bone, muscle and cardiovascular tissues is well-known. This review aims to summarise the current state-of-the-art regarding the role of SS in the differentiation of MSCs into osteogenic, cardiovascular, chondrogenic, adipogenic and neurogenic lineages. We will also highlight and discuss the potential of employing SS to augment the differentiation of MSCs to other lineages, where SS is known to play a role physiologically but has not yet been successfully harnessed for in vitro differentiation, including liver, kidney and corneal tissue lineage cells. The incorporation of SS, in combination with biochemical and biophysical cues during MSC differentiation, may provide a promising avenue to improve the functionality of the differentiated cells by more closely mimicking the in vivo milieu.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 776
Author(s):  
Shipra Kumari ◽  
Bashistha Kumar Kanth ◽  
Ju young Ahn ◽  
Jong Hwa Kim ◽  
Geung-Joo Lee

Genome-wide transcriptome analysis using RNA-Seq of Lilium longiflorum revealed valuable genes responding to biotic stresses. WRKY transcription factors are regulatory proteins playing essential roles in defense processes under environmental stresses, causing considerable losses in flower quality and production. Thirty-eight WRKY genes were identified from the transcriptomic profile from lily genotypes, exhibiting leaf blight caused by Botrytis elliptica. Lily WRKYs have a highly conserved motif, WRKYGQK, with a common variant, WRKYGKK. Phylogeny of LlWRKYs with homologous genes from other representative plant species classified them into three groups- I, II, and III consisting of seven, 22, and nine genes, respectively. Base on functional annotation, 22 LlWRKY genes were associated with biotic stress, nine with abiotic stress, and seven with others. Sixteen unique LlWRKY were studied to investigate responses to stress conditions using gene expression under biotic and abiotic stress treatments. Five genes—LlWRKY3, LlWRKY4, LlWRKY5, LlWRKY10, and LlWRKY12—were substantially upregulated, proving to be biotic stress-responsive genes in vivo and in vitro conditions. Moreover, the expression patterns of LlWRKY genes varied in response to drought, heat, cold, and different developmental stages or tissues. Overall, our study provides structural and molecular insights into LlWRKY genes for use in the genetic engineering in Lilium against Botrytis disease.


2021 ◽  
Vol 7 (5) ◽  
pp. eabe3445
Author(s):  
Yicun Wang ◽  
Jinhui Wu ◽  
Hui Chen ◽  
Yang Yang ◽  
Chengwu Xiao ◽  
...  

Cancer stem cells (CSCs) are involved in tumorigenesis, recurrence, and therapy resistance. To identify critical regulators of sarcoma CSCs, we performed a reporter-based genome-wide CRISPR-Cas9 screen and uncovered Kruppel-like factor 11 (KLF11) as top candidate. In vitro and in vivo functional annotation defined a negative role of KLF11 in CSCs. Mechanistically, KLF11 and YAP/TEAD bound to adjacent DNA sites along with direct interaction. KLF11 recruited SIN3A/HDAC to suppress the transcriptional output of YAP/TEAD, which, in turn, promoted KLF11 transcription, forming a negative feedback loop. However, in CSCs, this negative feedback was lost because of epigenetic silence of KLF11, causing sustained YAP activation. Low KLF11 was associated with poor prognosis and chemotherapy response in patients with sarcoma. Pharmacological activation of KLF11 by thiazolidinedione effectively restored chemotherapy response. Collectively, our study identifies KLF11 as a negative regulator in sarcoma CSCs and potential therapeutic target.


2007 ◽  
Vol 16 (8) ◽  
pp. 823-832 ◽  
Author(s):  
Hongbin Fan ◽  
Haifeng Liu ◽  
Rui Zhu ◽  
Xusheng Li ◽  
Yuming Cui ◽  
...  

The purpose of this study was to compare chondral defects repair with in vitro and in vivo differentiated mesenchymal stem cells (MSCs). A novel PLGA-gelatin/chondroitin/hyaluronate (PLGA-GCH) hybrid scaffold with transforming growth factor-β1 (TGF-β1)-impregnated microspheres (MS-TGF) was fabricated to mimic the extracellular matrix. MS-TGF showed an initial burst release (22.5%) and a subsequent moderate one that achieved 85.1% on day 21. MSCs seeded on PLGA-GCH/MS-TGF or PLGA-GCH were incubated in vitro and showed that PLGA-GCH/MS-TGF significantly augmented proliferation of MSCs and glycosaminoglycan synthesis compared with PLGA-GCH. Then MSCs seeded on PLGA-GCH/MS-TGF were implanted and differentiated in vivo to repair chondral defect on the right knee of rabbit (in vivo differentiation repair group), while the contralateral defect was repaired with in vitro differentiated MSCs seeded on PLGA-GCH (in vitro differentiation repair group). The histology observation demonstrated that in vivo differentiation repair showed better chondrocyte morphology, integration, and subchondral bone formation compared with in vitro differentiation repair 12 and 24 weeks postoperatively, although there was no significant difference after 6 weeks. The histology grading score comparison also demonstrated the same results. The present study implies that in vivo differentiation induced by PLGA-GCH/MS-TGF and the host microenviroment could keep chondral phenotype and enhance repair. It might serve as another way to induce and expand seed cells in cartilage tissue engineering.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1400
Author(s):  
Enrico C. Torre ◽  
Mesude Bicer ◽  
Graeme S. Cottrell ◽  
Darius Widera ◽  
Francesco Tamagnini

Adipose-derived mesenchymal stromal cells (ASCs) are multipotent stem cells which can differentiate into various cell types, including osteocytes and adipocytes. Due to their ease of harvesting, multipotency, and low tumorigenicity, they are a prime candidate for the development of novel interventional approaches in regenerative medicine. ASCs exhibit slow, spontaneous Ca2+ oscillations and the manipulation of Ca2+ signalling via electrical stimulation was proposed as a potential route for promoting their differentiation in vivo. However, the effects of differentiation-inducing treatments on spontaneous Ca2+ oscillations in ASCs are not yet fully characterised. In this study, we used 2-photon live Ca2+ imaging to assess the fraction of cells showing spontaneous oscillations and the frequency of the oscillation (measured as interpeak interval—IPI) in ASCs undergoing osteogenic or adipogenic differentiation, using undifferentiated ASCs as controls. The measurements were carried out at 7, 14, and 21 days in vitro (DIV) to assess the effect of time in culture on Ca2+ dynamics. We observed that both time and differentiation treatment are important factors associated with a reduced fraction of cells showing Ca2+ oscillations, paralleled by increased IPI times, in comparison with untreated ASCs. Both adipogenic and osteogenic differentiation resulted in a reduction in Ca2+ dynamics, such as the fraction of cells showing intracellular Ca2+ oscillations and their frequency. Adipogenic differentiation was associated with a more pronounced reduction of Ca2+ dynamics compared to cells differentiating towards the osteogenic fate. Changes in Ca2+ associated oscillations with a specific treatment had already occurred at 7 DIV. Finally, we observed a reduction in Ca2+ dynamics over time in untreated ASCs. These data suggest that adipogenic and osteogenic differentiation cell fates are associated with specific changes in spontaneous Ca2+ dynamics over time. While this observation is interesting and provides useful information to understand the functional correlates of stem cell differentiation, further studies are required to clarify the molecular and mechanistic correlates of these changes. This will allow us to better understand the causal relationship between Ca2+ dynamics and differentiation, potentially leading to the development of novel, more effective interventions for both bone regeneration and control of adipose growth.


2004 ◽  
Vol 10 (9-10) ◽  
pp. 1518-1525 ◽  
Author(s):  
Robert C. Bielby ◽  
Aldo R. Boccaccini ◽  
Julia M. Polak ◽  
Lee D.K. Buttery

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4755-4755
Author(s):  
Stefan Wirths ◽  
Hans-Joerg Buehring ◽  
Lothar Kanz ◽  
Joerg T Hartmann ◽  
Hans-Georg Kopp

Abstract Malignant tumors are hypothesized to harbor small populations of self-renewing cancer stem cells. Targeting these cells may be the decisive step to overcome treatment resistance and achieve tumor eradication in cancer patients. Advanced soft tissue sarcomas (STS) are rare tumors with a dismal prognosis and a small number of systemic treatment options. STS may originate from mesenchymal stem cells (MSC); the latter have mainly been isolated from adult bone marrow (BM) as non-hematopoietic, self-renewing cells whose in vitro progeny comprises osteoblasts, chondroblasts, myocytes, and adipocytes. While in vitro expression profiles of MSC have been investigated extensively, the in vivo counterparts of MSC are still hypothetical. To target rare human cell BM populations including MSC, an exclusive antibody panel was developed. The target antigens include platelet-derived growth factor receptor-β (CD140b), HER-2/erbB2 (CD340), the recently described W8B2 antigen as well as several surface antigens identified by novel antibodies. To define the expression pattern of MSC-markers in STS, three STS cell lines were tested for expression of these antigens. In addition, snap-frozen primary STS sections were analyzed by immunohistochemistry using the same antibody panel. All cell lines revealed expression of selected markers including CD340, W8B2, and CD140b. Several MSC markers were restricted to a subpopulation of cells. In addition, leiomyosarcoma cells displayed a different expression pattern as compared to liposarcoma and Ewing’s sarcoma cells. Results of immunohistochemistry analysis of primary leiomyosarcoma tumor samples correlated strongly with expression patterns established by FACS analysis. However, important cytoarchitectural features regarding selected markers were revealed by immunohistochemistry: while primary leiomyosarcomas displayed uniform expression of W7C6, HEK3D6, CD10, and CD318, other markers such as CD34, W5C5, and 57D2 were expressed by tumor endothelia only. Moreover, a population of perivascular tumor cells was found to express the MSC-markers W4A5, W8B2, CD140b, W3D5, and W5C4. Novel MSC-markers are expressed by subpopulations in STS cell lines as well as in primary sarcoma tissue. Further studies on the functional significance of these phenotypical studies are underway and may help to identify novel specific targets recognizing the self-renewing STS-compartment.


Oncotarget ◽  
2017 ◽  
Vol 8 (10) ◽  
pp. 16456-16462 ◽  
Author(s):  
Jong Soo Kim ◽  
Yean Ju Hong ◽  
Hyun Woo Choi ◽  
Hyuk Song ◽  
Sung June Byun ◽  
...  

2019 ◽  
Vol 30 (16) ◽  
pp. 1985-1999 ◽  
Author(s):  
Lucas R. Smith ◽  
Jerome Irianto ◽  
Yuntao Xia ◽  
Charlotte R. Pfeifer ◽  
Dennis E. Discher

Tissue regeneration at an injured site depends on proliferation, migration, and differentiation of resident stem or progenitor cells, but solid tissues are often sufficiently dense and constricting that nuclei are highly stressed by migration. In this study, constricted migration of myoblastic cell types and mesenchymal stem cells (MSCs) increases nuclear rupture, increases DNA damage, and modulates differentiation. Fewer myoblasts fuse into regenerating muscle in vivo after constricted migration in vitro, and myodifferentiation in vitro is likewise suppressed. Myosin II inhibition rescues rupture and DNA damage, implicating nuclear forces, while mitosis and the cell cycle are suppressed by constricted migration, consistent with a checkpoint. Although perturbed proliferation fails to explain defective differentiation, nuclear rupture mislocalizes differentiation-relevant MyoD and KU80 (a DNA repair factor), with nuclear entry of the DNA-binding factor cGAS. Human MSCs exhibit similar damage, but osteogenesis increases—which is relevant to bone and to calcified fibrotic tissues, including diseased muscle. Tissue repair can thus be modulated up or down by the curvature of pores through which stem cells squeeze.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2508
Author(s):  
Madalina Mirea ◽  
Stefan Eckensperger ◽  
Markus Hengstschläger ◽  
Mario Mikula

Malignant melanoma represents a highly aggressive form of skin cancer. The metastatic process itself is mostly governed by the so-called epithelial mesenchymal transition (EMT), which confers cancer cells migrative, invasive and resistance abilities. Since EMT represents a conserved developmental process, it is worthwhile further examining the nature of early developmental steps fundamental for melanocyte differentiation. This can be done either in vivo by analyzing the physiologic embryo development in different species or by in vitro studies of melanocytic differentiation originating from embryonic human stem cells. Most importantly, external cues drive progenitor cell differentiation, which can be divided in stages favoring neural crest specification or melanocytic differentiation and proliferation. In this review, we describe ectopic factors which drive human pluripotent stem cell differentiation to melanocytes in 2D, as well as in organoid models. Furthermore, we compare developmental mechanisms with processes described to occur during melanoma development. Finally, we suggest differentiation factors as potential co-treatment options for metastatic melanoma patients.


Sign in / Sign up

Export Citation Format

Share Document