scholarly journals Efficacy of Recombinant Methioninase (rMETase) on Recalcitrant Cancer Patient-Derived Orthotopic Xenograft (PDOX) Mouse Models: A Review

Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 410 ◽  
Author(s):  
Kei Kawaguchi ◽  
Qinghong Han ◽  
Shukuan Li ◽  
Yuying Tan ◽  
Kentaro Igarashi ◽  
...  

An excessive requirement for methionine (MET), termed MET dependence, appears to be a general metabolic defect in cancer and has been shown to be a very effective therapeutic target. MET restriction (MR) has inhibited the growth of all major cancer types by selectively arresting cancer cells in the late-S/G2 phase, when they also become highly sensitive to cytotoxic agents. Recombinant methioninase (rMETase) has been developed to effect MR. The present review describes the efficacy of rMETase on patient-derived orthotopic xenograft (PDOX) models of recalcitrant cancer, including the surprising result that rMETase administrated orally can be highly effective.

2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Diane Lefley ◽  
Faith Howard ◽  
Fawaz Arshad ◽  
Steven Bradbury ◽  
Hannah Brown ◽  
...  

Abstract Background Late-stage breast cancer preferentially metastasises to bone; despite advances in targeted therapies, this condition remains incurable. The lack of clinically relevant models for studying breast cancer metastasis to a human bone microenvironment has stunted the development of effective treatments for this condition. To address this problem, we have developed humanised mouse models in which breast cancer patient-derived xenografts (PDXs) metastasise to human bone implants with low variability and high frequency. Methods To model the human bone environment, bone discs from femoral heads of patients undergoing hip replacement surgery were implanted subcutaneously into NOD/SCID mice. For metastasis studies, 7 patient-derived xenograft tumours (PDX: BB3RC32, ER+ PR+ HER2−; BB2RC08, ER+ PR+ ER2−; BB6RC37, ER− PR− HER2− and BB6RC39, ER+ PR+ HER2+), MDA-MB-231-luc2, T47D-luc2 or MCF7-Luc2 cells were injected into the 4th mammary ducts and metastases monitored by luciferase imaging and confirmed on histological sections. Bone integrity, viability and vascularisation were assessed by uCT, calcein uptake and histomorphometry. Expression profiling of genes/proteins during different stages of metastasis were assessed by whole genome Affymetrix array, real-time PCR and immunohistochemistry. Importance of IL-1 was confirmed following anakinra treatment. Results Implantation of femoral bone provided a metabolically active, human-specific site for tumour cells to metastasise to. After 4 weeks, bone implants were re-vascularised and demonstrated active bone remodelling (as evidenced by the presence of osteoclasts, osteoblasts and calcein uptake). Restricting bone implants to the use of subchondral bone and introduction of cancer cells via intraductal injection maximised metastasis to human bone implants. MDA-MB-231 cells specifically metastasised to human bone (70% metastases) whereas T47D, MCF7, BB3RC32, BB2RC08, and BB6RC37 cells metastasised to both human bone and mouse bones. Importantly, human bone was the preferred metastatic site especially from ER+ PDX (100% metastasis human bone compared with 20–75% to mouse bone), whereas ER-ve PDX developed metastases in 20% of human and 20% of mouse bone. Breast cancer cells underwent a series of molecular changes as they progressed from primary tumours to bone metastasis including altered expression of IL-1B, IL-1R1, S100A4, CTSK, SPP1 and RANK. Inhibiting IL-1B signalling significantly reduced bone metastasis. Conclusions Our reliable and clinically relevant humanised mouse models provide significant advancements in modelling of breast cancer bone metastasis.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e13500-e13500
Author(s):  
Vishal Gupta ◽  
Insiya Jafferji ◽  
Miguel Garza ◽  
Sujita Sukumaran ◽  
Jacky Woo ◽  
...  

e13500 Background: The detection of circulating tumor cells (CTCs) using immunomagnetic EpCAM-based capture methods has been conceptually accepted as a “liquid tumor biopsy”. However, these methods have limited the recovery of CTCs for molecular profiling applications. We developed a novel continuous flow dielectrophoresis field-flow fractionation (DEP-FFF) device, ApoStream for antibody-independent capture of circulating cancer cells (CCCs), with improved recovery across multiple cancer types and preserved viability of CCCs for downstream characterization. Methods: The performance of ApoStream was demonstrated using a low EpCAM expressing cell line, SKOV3. ApoStream was further used to enrich CCCs from various cancer patient blood. Prostate, breast and NSCLC CCCs were stained for cytokeratin (CK), CD45, and DAPI; melanoma CCCs were stained with S100, CD45 and DAPI. CCC enumeration was performed using laser scanning cytometry. Results: In system precision performance studies, average inter-day recovery on the ApoStream was 80.3 ± 3.5%, CV = 4.3% when cancer cells were spiked into buffer, and 78.5 ± 3.0%, CV = 3.3% when cancer cells spiked into ~10 million healthy peripheral blood mononuclear cells (PBMCs). Linearity performance was demonstrated with spiking 5-2600 SKOV3 cells into 10 million PBMCs (R2=1). Cell viability was not affected by processing through ApoStream device. High CCC recovery from metastatic cancer patient blood samples was obtained with counts ranging from 0 - 2630 (NSCLC, n=66), 0 - 3490 (prostate, n=29), 10 - 968 (breast, n=11), and 3 - 3120 (melanoma, n=13) CCCs per 7.5 mL blood. Positive CCC counts were obtained in 90% of NSCLC samples, 93% of prostate cancer samples, 100% breast cancer and melanoma specimens. There were no CK+ cells detected in healthy donor blood controls. Conclusions: Improved CCC recovery from various cancer types was demonstrated with the ApoStream device. ApoStream provides an antibody-independent method for capture of viable CCCs that enables further downstream molecular characterization of rare cells for use in clinical applications. Acknowledgements: Funded by NCI Contract No. HHSN261200800001E.


2021 ◽  
Author(s):  
Kirsten A Lopez ◽  
Sovan Sarkar ◽  
Elena Seraia ◽  
Chiara Toffanin ◽  
Christian Cooper ◽  
...  

The histone methyltransferase SETD2 and its associated histone mark H3 lysine 36 trimethylation (H3K36me3) are frequently lost in certain cancer types, pinpointing SETD2 as an important therapeutic target. Here we show that SETD2-deficient cancer cells are profoundly sensitive to the compound RITA, resulting in significant p53 induction and apoptosis. This is further associated with defects in DNA replication, leading to delays in S-phase progression, increased recruitment of replication stress markers, and reduced replication fork progression. RITA sensitivity is linked to the phenol sulphotransferase SULT1A1, which we find to be highly upregulated in cells that lack SETD2. Depletion of SULT1A1 or addition of the phenol sulphotransferase inhibitor DCNP abolishes these phenotypes and suppresses the sensitivity of SETD2-deficient cancer cells, identifying SULT1A1 activity to be critical in mediating the potent cytotoxicity of RITA against SETD2-deficient cells. These findings define a novel therapeutic strategy for targeting the loss of SETD2 in cancer. Significance: The histone-modifying enzyme SETD2 has emerged as an important tumour suppressor in a number of different cancer types, identifying it as a promising therapeutic target. The concept of synthetic lethality, a genetic interaction in which the simultaneous loss of two genes or pathways that regulate a common essential process renders the cell nonviable, is a useful tool for killing cancer cells that have known mutations. In this study, we conducted a synthetic lethality screen for compounds that specifically target SETD2-deficient cancer cells. The top hit, a compound called RITA, reduces cell viability and induces cell death only in the context of SETD2 loss, thereby highlighting a potential novel therapeutic strategy for treating SETD2-deficient cancers.


2019 ◽  
Vol 15 (2) ◽  
pp. 138-149
Author(s):  
Saleem Farooq ◽  
Javid A. Banday ◽  
Aashiq Hussain ◽  
Momina Nazir ◽  
Mushtaq A. Qurishi ◽  
...  

Background: Natural product, osthol has been found to have important biological and pharmacological roles particularly having inhibitory effect on multiple types of cancer. Objective: The unmet needs in cancer therapeutics make its derivatization an important and exciting field of research. Keeping this in view, a whole new series of diverse analogues of osthol (1) were synthesized. Method: All the newly synthesized compounds were made through modification in the lactone ring as well as in the side chain of the osthol molecule and were subjected to anti-proliferative screening through 3-(4,5-Dimethylthiazol-yl)-diphenyl tetrazoliumbromide (MTT) against four different human cancers of diverse origins viz. Colon (Colo-205), lung (A549), Leukemia (THP- 1) and breast (MCF-7) including SV40 transformed normal breast epithelial cell (fR-2). Results: Interestingly, among the tested molecules, most of the analogs displayed better antiproliferative activity than the parent Osthol 1. However, among all the tested analogs, compound 28 exhibited the best results against leukemia (THP1) cell line with IC50 of 5µM.Compound 28 induced potent apoptotic effects and G1 phase arrest in leukemia cancer cells (THP1). The population of apoptotic cells increased from 13.8% in negative control to 26.9% at 8μM concentration of 28. Compound 28 also induced a remarkable decrease in mitochondrial membrane potential (ΛΨm) leading to apoptosis of the cancer cells. Conclusion: A novel series of molecules derived from natural product osthol were synthesized, wherein compound 28 was found to be most effective against leukemia and with 10 fold less toxicity against normal cells. The compound induced cancer inhibition mainly through apoptosis and thus has a potential in cancer therapeutics.


Author(s):  
Stacey J. Scott ◽  
Xiaodun Li ◽  
Sriganesh Jammula ◽  
Ginny Devonshire ◽  
Catherine Lindon ◽  
...  

AbstractPolyploidy is present in many cancer types and is increasingly recognized as an important factor in promoting chromosomal instability, genome evolution, and heterogeneity in cancer cells. However, the mechanisms that trigger polyploidy in cancer cells are largely unknown. In this study, we investigated the origin of polyploidy in esophageal adenocarcinoma (EAC), a highly heterogenous cancer, using a combination of genomics and cell biology approaches in EAC cell lines, organoids, and tumors. We found the EAC cells and organoids present specific mitotic defects consistent with problems in the attachment of chromosomes to the microtubules of the mitotic spindle. Time-lapse analyses confirmed that EAC cells have problems in congressing and aligning their chromosomes, which can ultimately culminate in mitotic slippage and polyploidy. Furthermore, whole-genome sequencing, RNA-seq, and quantitative immunofluorescence analyses revealed alterations in the copy number, expression, and cellular distribution of several proteins known to be involved in the mechanics and regulation of chromosome dynamics during mitosis. Together, these results provide evidence that an imbalance in the amount of proteins implicated in the attachment of chromosomes to spindle microtubules is the molecular mechanism underlying mitotic slippage in EAC. Our findings that the likely origin of polyploidy in EAC is mitotic failure caused by problems in chromosomal attachments not only improves our understanding of cancer evolution and diversification, but may also aid in the classification and treatment of EAC and possibly other highly heterogeneous cancers.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 466
Author(s):  
Chen Chen ◽  
Samuel Haddox ◽  
Yue Tang ◽  
Fujun Qin ◽  
Hui Li

Gene fusions and their products (RNA and protein) have been traditionally recognized as unique features of cancer cells and are used as ideal biomarkers and drug targets for multiple cancer types. However, recent studies have demonstrated that chimeric RNAs generated by intergenic alternative splicing can also be found in normal cells and tissues. In this study, we aim to identify chimeric RNAs in different non-neoplastic cell lines and investigate the landscape and expression of these novel candidate chimeric RNAs. To do so, we used HEK-293T, HUVEC, and LO2 cell lines as models, performed paired-end RNA sequencing, and conducted analyses for chimeric RNA profiles. Several filtering criteria were applied, and the landscape of chimeric RNAs was characterized at multiple levels and from various angles. Further, we experimentally validated 17 chimeric RNAs from different classifications. Finally, we examined a number of validated chimeric RNAs in different cancer and non-cancer cells, including blood from healthy donors, and demonstrated their ubiquitous expression pattern.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 97
Author(s):  
Odeya Marciano ◽  
Linoy Mehazri ◽  
Sally Shpungin ◽  
Alexander Varvak ◽  
Eldad Zacksenhaus ◽  
...  

Aerobic glycolysis is an important metabolic adaptation of cancer cells. However, there is growing evidence that reprogrammed mitochondria also play an important metabolic role in metastatic dissemination. Two constituents of the reprogrammed mitochondria of cancer cells are the intracellular tyrosine kinase Fer and its cancer- and sperm-specific variant, FerT. Here, we show that Fer and FerT control mitochondrial susceptibility to therapeutic and hypoxic stress in metastatic colon (SW620) and non-small cell lung cancer (NSCLC-H1299) cells. Fer- and FerT-deficient SW620 and H1299 cells (SW∆Fer/FerT and H∆Fer/FerT cells, respectively) become highly sensitive to metformin treatment and to hypoxia under glucose-restrictive conditions. Metformin impaired mitochondrial functioning that was accompanied by ATP deficiency and robust death in SW∆Fer/FerT and H∆Fer/FerT cells compared to the parental SW620 and H1299 cells. Notably, selective knockout of the fer gene without affecting FerT expression reduced sensitivity to metformin and hypoxia seen in SW∆Fer/FerT cells. Thus, Fer and FerT modulate the mitochondrial susceptibility of metastatic cancer cells to hypoxia and metformin. Targeting Fer/FerT may therefore provide a novel anticancer treatment by efficient, selective, and more versatile disruption of mitochondrial function in malignant cells.


Sign in / Sign up

Export Citation Format

Share Document