scholarly journals Cross-Talk between Fibroblast Growth Factor Receptors and Other Cell Surface Proteins

Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 455 ◽  
Author(s):  
Marta Latko ◽  
Aleksandra Czyrek ◽  
Natalia Porębska ◽  
Marika Kucińska ◽  
Jacek Otlewski ◽  
...  

Fibroblast growth factors (FGFs) and their receptors (FGFRs) constitute signaling circuits that transmit signals across the plasma membrane, regulating pivotal cellular processes like differentiation, migration, proliferation, and apoptosis. The malfunction of FGFs/FGFRs signaling axis is observed in numerous developmental and metabolic disorders, and in various tumors. The large diversity of FGFs/FGFRs functions is attributed to a great complexity in the regulation of FGFs/FGFRs-dependent signaling cascades. The function of FGFRs is modulated at several levels, including gene expression, alternative splicing, posttranslational modifications, and protein trafficking. One of the emerging ways to adjust FGFRs activity is through formation of complexes with other integral proteins of the cell membrane. These proteins may act as coreceptors, modulating binding of FGFs to FGFRs and defining specificity of elicited cellular response. FGFRs may interact with other cell surface receptors, like G-protein-coupled receptors (GPCRs) or receptor tyrosine kinases (RTKs). The cross-talk between various receptors modulates the strength and specificity of intracellular signaling and cell fate. At the cell surface FGFRs can assemble into large complexes involving various cell adhesion molecules (CAMs). The interplay between FGFRs and CAMs affects cell–cell interaction and motility and is especially important for development of the central nervous system. This review summarizes current stage of knowledge about the regulation of FGFRs by the plasma membrane-embedded partner proteins and highlights the importance of FGFRs-containing membrane complexes in pathological conditions, including cancer.

2021 ◽  
Vol 22 (10) ◽  
pp. 5300
Author(s):  
Markus M. Kramer ◽  
Levin Lataster ◽  
Wilfried Weber ◽  
Gerald Radziwill

Biological signals are sensed by their respective receptors and are transduced and processed by a sophisticated intracellular signaling network leading to a signal-specific cellular response. Thereby, the response to the signal depends on the strength, the frequency, and the duration of the stimulus as well as on the subcellular signal progression. Optogenetic tools are based on genetically encoded light-sensing proteins facilitating the precise spatiotemporal control of signal transduction pathways and cell fate decisions in the absence of natural ligands. In this review, we provide an overview of optogenetic approaches connecting light-regulated protein-protein interaction or caging/uncaging events with steering the function of signaling proteins. We briefly discuss the most common optogenetic switches and their mode of action. The main part deals with the engineering and application of optogenetic tools for the control of transmembrane receptors including receptor tyrosine kinases, the T cell receptor and integrins, and their effector proteins. We also address the hallmarks of optogenetics, the spatial and temporal control of signaling events.


2000 ◽  
Vol 279 (2) ◽  
pp. E266-E274 ◽  
Author(s):  
Paul G. Drake ◽  
Alejandro Balbis ◽  
Jiong Wu ◽  
John J. M. Bergeron ◽  
Barry I. Posner

Phosphatidylinositol 3-kinase (PI 3-kinase) plays an important role in a variety of hormone and growth factor-mediated intracellular signaling cascades and has been implicated in the regulation of a number of metabolic effects of insulin, including glucose transport and glycogen synthase activation. In the present study we have examined 1) the association of PI 3-kinase with the insulin receptor kinase (IRK) in rat liver and 2) the subcellular distribution of PI 3-kinase-IRK interaction. Insulin treatment promoted a rapid and pronounced recruitment of PI 3-kinase to IRKs located at the plasma membrane, whereas no increase in association with endosomal IRKs was observed. In contrast to IRS-1-associated PI 3-kinase activity, association of PI 3-kinase with the plasma membrane IRK did not augment the specific activity of the lipid kinase. With use of the selective PI 3-kinase inhibitor wortmannin, our data suggest that the cell surface IRK β-subunit is not a substrate for the serine kinase activity of PI 3-kinase. The functional significance for the insulin-stimulated selective recruitment of PI 3-kinase to cell surface IRKs remains to be elucidated.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3512 ◽  
Author(s):  
Adam Bajinting ◽  
Ho Leung Ng

Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases containing three domains: an extracellular receptor domain, a single transmembrane helix, and an intracellular tyrosine kinase domain. FGFRs are activated by fibroblast growth factors (FGFs) as part of complex signal transduction cascades regulating angiogenesis, skeletal formation, cell differentiation, proliferation, cell survival, and cancer. We have developed the first recombinant expression system in E. coli to produce a construct of human FGFR2 containing its transmembrane and extracellular receptor domains. We demonstrate that the expressed construct is functional in binding heparin and dimerizing. Size exclusion chromatography demonstrates that the purified FGFR2 does not form a complex with FGF1 or adopts an inactive dimer conformation. Progress towards the successful recombinant production of intact FGFRs will facilitate further biochemical experiments and structure determination that will provide insight into how extracellular FGF binding activates intracellular kinase activity.


1994 ◽  
Vol 14 (11) ◽  
pp. 7660-7669
Author(s):  
Y Li ◽  
C Basilico ◽  
A Mansukhani

Ligand-induced dimerization and transphosphorylation are thought to be important events by which receptor tyrosine kinases generate cellular signals. We have investigated the ability of signalling-defective, truncated fibroblast growth factor (FGF) receptors (FGFR-1 and FGFR-2) to block the FGF response in cells that express both types of endogenous FGF receptors. When these dominant negative receptors are expressed in NIH 3T3 cells transformed by the secreted FGF-4, the transformed properties of the cells can be reverted to various degrees, with better reversion phenotype correlating with higher levels of truncated receptor expression. Furthermore, truncated FGFR-2 is significantly more efficient at producing reversion than FGFR-1, indicating that FGF-4 preferentially utilizes the FGFR-2 signalling pathway. NIH 3T3 clones expressing these truncated receptors are more resistant to FGF-induced mitogenesis and also exhibit reduced tyrosine phosphorylation upon treatment with FGF. The block in FGF-signalling, however, can be overcome by the addition of excess growth factor. The truncated receptors have binding affinities that are four- to eightfold lower than those of wild-type receptors, as measured by Scatchard analysis. We also observed a partial specificity in the responses of truncated-receptor-expressing clones to FGF-2 or FGF-4. Our results suggest that the block to signal transduction produced by kinase-negative FGF receptors is achieved through a combination of dominant negative effects and competition for growth factor binding with functional receptors.


1994 ◽  
Vol 14 (11) ◽  
pp. 7660-7669 ◽  
Author(s):  
Y Li ◽  
C Basilico ◽  
A Mansukhani

Ligand-induced dimerization and transphosphorylation are thought to be important events by which receptor tyrosine kinases generate cellular signals. We have investigated the ability of signalling-defective, truncated fibroblast growth factor (FGF) receptors (FGFR-1 and FGFR-2) to block the FGF response in cells that express both types of endogenous FGF receptors. When these dominant negative receptors are expressed in NIH 3T3 cells transformed by the secreted FGF-4, the transformed properties of the cells can be reverted to various degrees, with better reversion phenotype correlating with higher levels of truncated receptor expression. Furthermore, truncated FGFR-2 is significantly more efficient at producing reversion than FGFR-1, indicating that FGF-4 preferentially utilizes the FGFR-2 signalling pathway. NIH 3T3 clones expressing these truncated receptors are more resistant to FGF-induced mitogenesis and also exhibit reduced tyrosine phosphorylation upon treatment with FGF. The block in FGF-signalling, however, can be overcome by the addition of excess growth factor. The truncated receptors have binding affinities that are four- to eightfold lower than those of wild-type receptors, as measured by Scatchard analysis. We also observed a partial specificity in the responses of truncated-receptor-expressing clones to FGF-2 or FGF-4. Our results suggest that the block to signal transduction produced by kinase-negative FGF receptors is achieved through a combination of dominant negative effects and competition for growth factor binding with functional receptors.


1990 ◽  
Vol 10 (6) ◽  
pp. 2606-2618 ◽  
Author(s):  
C M Isacke ◽  
P van der Geer ◽  
T Hunter ◽  
I S Trowbridge

A 180-kilodalton (kDa) protein (p180) was identified among the antigens for a panel of monoclonal antibodies raised against human fibroblast cell surface proteins. Binding studies with 125I-Fab' fragments of an anti-p180 monoclonal antibody demonstrated that 10 to 30% of p180 was located on the plasma membrane and that the remaining 70 to 90% was on intracellular membranes. p180 was rapidly internalized from the cell surface at 37 degrees C, and kinetic analyses indicated that this was a constitutive process followed by the recycling of p180 back to the plasma membrane. Morphological studies demonstrated that on the cell surface p180 was concentrated in coated pits, whereas inside the cell it was found in endosomes as suggested by its colocalization with the transferrin receptor. Immunoblot analysis with a polyclonal antiserum raised against purified human protein showed that p180 has a restricted distribution with expression at high levels in fibroblast cultures and in tissues containing cells of mesodermal origin. A biochemical characterization of p180 showed it to be a transmembrane glycoprotein with an extracellular domain, which consists of approximately 30 kDa of complex oligosaccharides attached to at least 45 kDa of the protein core. The cytoplasmic domain of p180 was found to contain a serine residue(s) that was phosphorylated both in vivo and in vitro by activated protein kinase C. p180 was purified by subjecting solubilized membrane proteins from a human osteosarcoma cell line to immunoaffinity chromatography and gel filtration. The N-terminal sequence information obtained from the purified protein showed no homology to other known proteins. It was concluded that p180 may be a novel recycling receptor which is highly restricted in its expression to fibroblastlike cells.


1995 ◽  
Vol 310 (1) ◽  
pp. 271-278 ◽  
Author(s):  
L Uhlin-Hansen ◽  
M Yanagishita

Rat ovarian granulosa cells were labelled with [35S]sulphate for 0.5-20 h and chased in the presence or absence of 1-2 micrograms/ml of brefeldin A (BFA) for up to 21 h. Heparan [35S]sulphate (HS) proteoglycans from the culture medium, plasma membrane and intracellular fractions were then analysed by gel chromatography. In the absence of BFA, about 85% of the plasma membrane-associated HS proteoglycans were endocytosed and subsequently degraded intracellularly. Recirculation of the HS proteoglycans between the intracellular pool and the cell surface was not observed. Exposing the cells to BFA for less than 1 h did not influence the turnover of the HS proteoglycans, whereas the effect of the drug on the Golgi functions reached a maximum in approx. 10 min. When the cells were treated with BFA for more than 1-2 h, the rate of endocytosis of HS proteoglycans was reduced to about 50% of the control. The delivery of endocytosed HS proteoglycans to lysosomes were not affected by the drug. Cycloheximide also reduced the endocytosis of HS proteoglycans, but not as much as BFA, indicating that the inhibitory effect of BFA can be only partly accounted for by a block of protein transport from the endoplasmic reticulum to the plasma membrane. In contrast with the endocytosis of HS proteoglycans, neither that of 125I-transferrin, known to be mediated by clathrin-coated vesicles, nor that of 125I-ricin, a marker molecule for bulk endocytosis, was affected by BFA. The half-life of 125I-transferrin and 125I-ricin in the plasma membrane was about 10 and 25 min respectively compared with about 5 h for the HS proteoglycans. Altogether, these results indicate that the endocytosis of plasma-membrane-associated HS proteoglycans is mediated by different mechanisms than the endocytosis of most other cell-surface proteins. Further, the mechanisms involved in the endocytosis of HS proteoglycans are sensitive to BFA.


2020 ◽  
Vol 477 (12) ◽  
pp. 2327-2345 ◽  
Author(s):  
Alessandra Casamento ◽  
Emmanuel Boucrot

Endocytosis mediates the cellular uptake of micronutrients and cell surface proteins. Clathrin-mediated endocytosis (CME) is the housekeeping pathway in resting cells but additional Clathrin-independent endocytic (CIE) routes, including Fast Endophilin-Mediated Endocytosis (FEME), internalize specific cargoes and support diverse cellular functions. FEME is part of the Dynamin-dependent subgroup of CIE pathways. Here, we review our current understanding of the molecular mechanism of FEME. Key steps are: (i) priming, (ii) cargo selection, (iii) membrane curvature and carrier formation, (iv) membrane scission and (v) cytosolic transport. All steps are controlled by regulatory mechanisms mediated by phosphoinositides and by kinases such as Src, LRRK2, Cdk5 and GSK3β. A key feature of FEME is that it is not constitutively active but triggered upon the stimulation of selected cell surface receptors by their ligands. In resting cells, there is a priming cycle that concentrates Endophilin into clusters on discrete locations of the plasma membrane. In the absence of receptor activation, the patches quickly abort and new cycles are initiated nearby, constantly priming the plasma membrane for FEME. Upon activation, receptors are swiftly sorted into pre-existing Endophilin clusters, which then bud to form FEME carriers within 10 s. We summarize the hallmarks of FEME and the techniques and assays required to identify it. Next, we review similarities and differences with other CIE pathways and proposed cargoes that may use FEME to enter cells. Finally, we submit pending questions and future milestones and discuss the exciting perspectives that targeting FEME may boost treatments against cancer and neurodegenerative diseases.


2021 ◽  
Author(s):  
Marwan G. AbidAlthagafi

The innate immune system is the first shield against foreign attack inside the human body, and it is usually carried out with phagocytosis. An essential macrophage cell surface protein is the Fc receptor which contributes to the engulfment of unknown antigens. One of the important members of Fc receptors is the gamma receptor that binds to the immunoglobulin G (IgG) ligand. Another key receptor in this study is the CD36 receptor, which plays a crucial role in the progression of atherosclerosis, the hardening of arteries, with its ligand oxidized low-density lipoprotein (OxLDL). In this report, protein tyrosine kinase enzymes have been detected in the involvement of receptor complexes with human U937 macrophages, specifically PTK2 and PTK2b genes. Protein tyrosine kinases were known to promote cell migration as a main player in intracellular signal transduction cascades in relation to extracellular stimuli. Cell surface proteins are essential for the immunization of various diseases; yet, the molecular machinery of surface receptors remains unclear. This research primarily examined the dynamic nature of protein tyrosine kinases in an ongoing investigation of macrophage cell surface receptors, particularly the role of Fc γ and CD36 receptors with their ligands IgG and oxLDL coated beads in phagocytosis. Our report demonstrates a novel role of PTK2 and PTK2b functions in relation to U937 CD36-mediated phagocytosis. The Phagocytic efficiency of U937 macrophages was analyzed using laser scanning confocal microscope after silencing the cells with siRNA followed by quantitative counting of phagocytosis. The PF drug FAK inhibitor was also introduced to compare the phagocytic efficiency of siRNA cells.


1994 ◽  
Vol 107 (7) ◽  
pp. 2005-2020 ◽  
Author(s):  
F. Garcia-del Portillo ◽  
M.G. Pucciarelli ◽  
W.A. Jefferies ◽  
B.B. Finlay

Salmonella interact with eucaryotic membranes to trigger internalization into non-phagocytic cells. In this study we examined the distribution of host plasma membrane proteins during S. typhimurium invasion of epithelial cells. Entry of S. typhimurium into HeLa epithelial cells produced extensive aggregation of cell surface class I MHC heavy chain, beta 2-microglobulin, fibronectin-receptor (alpha 5 beta 1 integrin), and hyaluronate receptor (CD-44). Other cell surface proteins such as transferrin-receptor or Thy-1 were aggregated by S. typhimurium to a much lesser extent. Capping of these plasma membrane proteins was observed in membrane ruffles localized to invading S. typhimurium and in the area surrounding these structures. In contrast, membrane ruffling induced by epidermal growth factor only produced minor aggregations of surface proteins, localized exclusively in the membrane ruffle. This result suggests that extensive redistribution of these proteins requires a signal related to bacterial invasion. This bacteria-induced process was associated with rearrangement of polymerized actin but not microtubules, since preincubation of epithelial cells with cytochalasin D blocked aggregation of these proteins while nocodazole treatment did not. Of the host surface proteins aggregated by S. typhimurium, only class I MHC heavy chain was predominantly present in the bacteria-containing vacuoles. No extensive aggregation of host plasma membrane proteins was detected when HeLa epithelial cells were infected with invasive bacteria that do not induce membrane ruffling, including Yersinia enterocolitica, a bacterium that triggers internalization via binding to beta 1 integrin, and a S. typhimurium invasion mutant that utilizes the Yersinia-internalization route. In contrast to the situation with S. typhimurium, class I MHC heavy chain was not selectively internalized into vacuoles containing these other bacteria. Extensive aggregation of host plasma membrane proteins was also not observed when other S. typhimurium mutants that are defective for invasion were used. The amount of internalized host plasma membrane proteins in the bacteria-containing vacuoles decreased over time with all invasive bacteria examined, indicating that modification of the composition of these vacuoles occurs. Therefore, our data show that S. typhimurium induces selective aggregation and internalization of host plasma membrane proteins, processes associated with the specific invasion strategy used by this bacterium to enter into epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document