scholarly journals A Role for Caenorhabditis elegans COMPASS in Germline Chromatin Organization

Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2049
Author(s):  
Marion Herbette ◽  
Valérie Robert ◽  
Aymeric Bailly ◽  
Loïc Gely ◽  
Robert Feil ◽  
...  

Deposition of histone H3 lysine 4 (H3K4) methylation at promoters is catalyzed by the SET1/COMPASS complex and is associated with context-dependent effects on gene expression and local changes in chromatin organization. The role of SET1/COMPASS in shaping chromosome architecture has not been investigated. Here we used Caenorhabditis elegans to address this question through a live imaging approach and genetic analysis. Using quantitative FRET (Förster resonance energy transfer)-based fluorescence lifetime imaging microscopy (FLIM) on germ cells expressing histones eGFP-H2B and mCherry-H2B, we find that SET1/COMPASS influences meiotic chromosome organization, with marked effects on the close proximity between nucleosomes. We further show that inactivation of set-2, encoding the C. elegans SET1 homologue, or CFP-1, encoding the chromatin targeting subunit of COMPASS, enhances germline chromosome organization defects and sterility of condensin-II depleted animals. set-2 loss also aggravates germline defects resulting from conditional inactivation of topoisomerase II, another structural component of chromosomes. Expression profiling of set-2 mutant germlines revealed only minor transcriptional changes, suggesting that the observed effects are at least partly independent of transcription. Altogether, our results are consistent with a role for SET1/COMPASS in shaping meiotic chromosomes in C. elegans, together with the non-histone proteins condensin-II and topoisomerase. Given the high degree of conservation, our findings expand the range of functions attributed to COMPASS and suggest a broader role in genome organization in different species.

2020 ◽  
Author(s):  
M. Herbette ◽  
V. Robert ◽  
A. Bailly ◽  
L. Gely ◽  
R. Feil ◽  
...  

AbstractDeposition of histone H3 lysine 4 (H3K4) methylation at promoters by SET1/COMPASS is associated with context-dependent effects on gene expression and local changes in chromatin organization. Whether SET1/COMPASS also contributes to higher-order chromosome structure has not been investigated. Here, we address this question by quantitative FRET (Förster resonance energy transfer)-based fluorescence lifetime imaging microscopy (FLIM) on C. elegans germ cells expressing histones H2B-eGFP and H2B-mCherry. We find that SET1/COMPASS subunits strongly influence meiotic chromosome organization, with marked effects on the close proximity between nucleosomes. We further show that inactivation of SET-2, the C. elegans homologue of SET1, or CFP-1, the chromatin targeting subunit of COMPASS, strongly enhance chromosome organization defects and loss of fertility resulting from depletion of condensin-II. Defects in chromosome morphology resulting from conditional inactivation of topoisomerase II, another structural component of chromosomes, were also aggravated in the absence of SET-2. Combined, our in vivo findings suggest a model in which the SET1/COMPASS histone methyltransferase complex plays a role in shaping meiotic chromosome in cooperation with the non-histone proteins condensin-II and topoisomerase.


2020 ◽  
Author(s):  
Marion Herbette ◽  
Valérie Robert ◽  
Aymeric Bailly ◽  
Loïc Gely ◽  
Robert Feil ◽  
...  

Abstract Background Histone-modifying activities play important roles in gene expression and influence higher-order genome organization. SET1/COMPASS (Complex Proteins Associated with Set1) deposits h istone H3 lysine 4 (H3K4) methylation at promoter regions and is associated with context-dependent effects on gene expression. Whether it also contributes to higher-order chromosome organization has not been explored. Results Using a quantitative FRET (Förster resonance energy transfer)-based fluorescence lifetime imaging microscopy (FLIM) approach to assay nanometer scale chromatin compaction in live animals, we reveal a novel role for SET1/COMPASS in structuring meiotic chromosomes in the C. elegans germline . Inactivation of SET-2, the C. elegans homologue of SET1, strongly enhanced chromosome organization defects and loss of fertility resulting from depletion of condensin-II, and aggravated defects in chromosome morphology resulting from inactivation of topoisomerase II, another major structural component of chromosomes. Loss of CFP-1, the chromatin targeting subunit of COMPASS, similarly affected germline chromatin compaction measured by FLIM-FRET and enhanced condensin-II knock-down phenotypes. Conclusions The data presented here are consistent with a role of SET1/ COMPASS in shaping meiotic chromosomes in the C. elegans germline. This new insight has important implications for how c hromatin-modifying complexes and histone modifications may cooperate with non histone-proteins to achieve proper chromosome organization, not only in meiosis, but also in mitosis.


2021 ◽  
Vol 22 (4) ◽  
pp. 1596
Author(s):  
Elsa Ronzier ◽  
Claire Corratgé-Faillie ◽  
Frédéric Sanchez ◽  
Christian Brière ◽  
Tou Cheu Xiong

Post-translational regulations of Shaker-like voltage-gated K+ channels were reported to be essential for rapid responses to environmental stresses in plants. In particular, it has been shown that calcium-dependent protein kinases (CPKs) regulate Shaker channels in plants. Here, the focus was on KAT2, a Shaker channel cloned in the model plant Arabidopsis thaliana, where is it expressed namely in the vascular tissues of leaves. After co-expression of KAT2 with AtCPK6 in Xenopuslaevis oocytes, voltage-clamp recordings demonstrated that AtCPK6 stimulates the activity of KAT2 in a calcium-dependent manner. A physical interaction between these two proteins has also been shown by Förster resonance energy transfer by fluorescence lifetime imaging (FRET-FLIM). Peptide array assays support that AtCPK6 phosphorylates KAT2 at several positions, also in a calcium-dependent manner. Finally, K+ fluorescence imaging in planta suggests that K+ distribution is impaired in kat2 knock-out mutant leaves. We propose that the AtCPK6/KAT2 couple plays a role in the homeostasis of K+ distribution in leaves.


2018 ◽  
Vol 115 (46) ◽  
pp. E10859-E10868 ◽  
Author(s):  
Yuwei Li ◽  
Jason A. Junge ◽  
Cosimo Arnesano ◽  
Garrett G. Gross ◽  
Jeffrey H. Miner ◽  
...  

Vertebrate embryogenesis and organogenesis are driven by cell biological processes, ranging from mitosis and migration to changes in cell size and polarity, but their control and causal relationships are not fully defined. Here, we use the developing limb skeleton to better define the relationships between mitosis and cell polarity. We combine protein-tagging and -perturbation reagents with advanced in vivo imaging to assess the role of Discs large 1 (Dlg1), a membrane-associated scaffolding protein, in mediating the spatiotemporal relationship between cytokinesis and cell polarity. Our results reveal that Dlg1 is enriched at the midbody during cytokinesis and that its multimerization is essential for the normal polarity of daughter cells. Defects in this process alter tissue dimensions without impacting other cellular processes. Our results extend the conventional view that division orientation is established at metaphase and anaphase and suggest that multiple mechanisms act at distinct phases of the cell cycle to transmit cell polarity. The approach employed can be used in other systems, as it offers a robust means to follow and to eliminate protein function and extends the Phasor approach for studying in vivo protein interactions by frequency-domain fluorescence lifetime imaging microscopy of Förster resonance energy transfer (FLIM-FRET) to organotypic explant culture.


2015 ◽  
Vol 7 (10) ◽  
pp. 4071-4089 ◽  
Author(s):  
Douglas J. Kelly ◽  
Sean C. Warren ◽  
Dominic Alibhai ◽  
Sunil Kumar ◽  
Yuriy Alexandrov ◽  
...  

An HCA-FLIM instrument is presented alongside exemplar oligomerisation, intermolecular and intramolecular FRET assays that require robust measurement of small lifetime changes.


1992 ◽  
Vol 117 (5) ◽  
pp. 935-948 ◽  
Author(s):  
F Klein ◽  
T Laroche ◽  
ME Cardenas ◽  
JF Hofmann ◽  
D Schweizer ◽  
...  

Topoisomerase II (topoII) and RAP1 (Repressor Activator Protein 1) are two abundant nuclear proteins with proposed structural roles in the higher-order organization of chromosomes. Both proteins co-fractionate as components of nuclear scaffolds from vegetatively growing yeast cells, and both proteins are present as components of pachytene chromosome, co-fractionating with an insoluble subfraction of meiotic nuclei. Immunolocalization using antibodies specific for topoII shows staining of an axial core of the yeast meiotic chromosome, extending the length of the synaptonemal complex. RAP1, on the other hand, is located at the ends of the paired bivalent chromosomes, consistent with its ability to bind telomeric sequences in vitro. In interphase nuclei, again in contrast to anti-topoII, anti-RAP1 gives a distinctly punctate staining that is located primarily at the nuclear periphery. Approximately 16 brightly staining foci can be identified in a diploid nucleus stained with anti-RAP1 antibodies, suggesting that telomeres are grouped together, perhaps through interaction with the nuclear envelope.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Erika Günther ◽  
André Klauß ◽  
Mauricio Toro-Nahuelpan ◽  
Dirk Schüler ◽  
Carsten Hille ◽  
...  

AbstractProtein interaction and protein imaging strongly benefit from the advancements in time-resolved and superresolution fluorescence microscopic techniques. However, the techniques were typically applied separately and ex vivo because of technical challenges and the absence of suitable fluorescent protein pairs. Here, we show correlative in vivo fluorescence lifetime imaging microscopy Förster resonance energy transfer (FLIM-FRET) and stimulated emission depletion (STED) microscopy to unravel protein mechanics and structure in living cells. We use magnetotactic bacteria as a model system where two proteins, MamJ and MamK, are used to assemble magnetic particles called magnetosomes. The filament polymerizes out of MamK and the magnetosomes are connected via the linker MamJ. Our system reveals that bacterial filamentous structures are more fragile than the connection of biomineralized particles to this filament. More importantly, we anticipate the technique to find wide applicability for the study and quantification of biological processes in living cells and at high resolution.


Sign in / Sign up

Export Citation Format

Share Document