scholarly journals Retinoic Acid Improves the Recovery of Replication-Competent Virus from Latent SIV Infected Cells

Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2076
Author(s):  
Omalla A. Olwenyi ◽  
Arpan Acharya ◽  
Nanda Kishore Routhu ◽  
Keely Pierzchalski ◽  
Jace W. Jones ◽  
...  

The accurate estimation and eradication of Human Immunodeficiency Virus (HIV) viral reservoirs is limited by the incomplete reactivation of cells harboring the latent replication-competent virus. We investigated whether the in vitro and in vivo addition of retinoic acid (RA) enhances virus replication and improves the detection of latent virus. Peripheral blood mononuclear cells (PBMCs) from naive and anti-retroviral therapy (ART)-treated SIV-infected rhesus macaques (RMs) were cultured in vitro with anti-CD3/CD28 + IL-2 in the presence/absence of RA. Viral RNA and p27 levels were quantified using RT-qPCR and ELISA, respectively. Viral reservoirs were estimated using the Tat/Rev-Induced Limited Dilution Assay (TILDA) and Quantitative Viral Outgrowth Assay (QVOA). In vitro and in vivo measures revealed that there was also an increase in viral replication in RA-treated versus without RA conditions. In parallel, the addition of RA to either CD3/CD28 or phorbol myristate acetate (PMA)/ionomycin during QVOA and TILDA, respectively, was shown to augment reactivation of the replication-competent viral reservoir in anti-retroviral therapy (ART)-suppressed RMs as shown by a greater than 2.3-fold increase for QVOA and 1 to 2-fold increments for multi-spliced RNA per million CD4+ T cells. The use of RA can be a useful approach to enhance the efficiency of current protocols used for in vitro and potentially in vivo estimates of CD4+ T cell latent reservoirs. In addition, flow cytometry analysis revealed that RA improved estimates of various viral reservoir assays by eliciting broad CD4 T-cell activation as demonstrated by elevated CD25 and CD38 but reduced CD69 and PD-1 expressing cells.

2004 ◽  
Vol 199 (6) ◽  
pp. 743-752 ◽  
Author(s):  
Nancy N. Berg-Brown ◽  
Matthew A. Gronski ◽  
Russell G. Jones ◽  
Alisha R. Elford ◽  
Elissa K. Deenick ◽  
...  

Understanding the pathways that signal T cell tolerance versus activation is key to regulating immunity. Previous studies have linked CD28 and protein kinase C-θ (PKCθ) as a potential signaling pathway that influences T cell activation. Therefore, we have compared the responses of T cells deficient for CD28 and PKCθ in vivo and in vitro. Here, we demonstrate that the absence of PKCθ leads to the induction of T cell anergy, with a phenotype that is comparable to the absence of CD28. Further experiments examined whether PKCθ triggered other CD28-dependent responses. Our data show that CD4 T cell–B cell cooperation is dependent on CD28 but not PKCθ, whereas CD28 costimulatory signals that augment proliferation can be uncoupled from signals that regulate anergy. Therefore, PKCθ relays a defined subset of CD28 signals during T cell activation and is critical for the induction of activation versus tolerance in vivo.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A663-A663
Author(s):  
Keegan Cooke ◽  
Juan Estrada ◽  
Jinghui Zhan ◽  
Jonathan Werner ◽  
Fei Lee ◽  
...  

BackgroundNeuroendocrine tumors (NET), including small cell lung cancer (SCLC), have poor prognosis and limited therapeutic options. AMG 757 is an HLE BiTE® immune therapy designed to redirect T cell cytotoxicity to NET cells by binding to Delta-like ligand 3 (DLL3) expressed on the tumor cell surface and CD3 on T cells.MethodsWe evaluated activity of AMG 757 in NET cells in vitro and in mouse models of neuroendocrine cancer in vivo. In vitro, co-cultures of NET cells and human T cells were treated with AMG 757 in a concentration range and T cell activation, cytokine production, and tumor cell killing were assessed. In vivo, AMG 757 antitumor efficacy was evaluated in xenograft NET and in orthotopic models designed to mimic primary and metastatic SCLC lesions. NSG mice bearing established NET were administered human T cells and then treated once weekly with AMG 757 or control HLE BiTE molecule; tumor growth inhibition was assessed. Pharmacodynamic effects of AMG 757 in tumors were also evaluated in SCLC models following a single administration of human T cells and AMG 757 or control HLE BiTE molecule.ResultsAMG 757 induced T cell activation, cytokine production, and potent T cell redirected killing of DLL3-expressing SCLC, neuroendocrine prostate cancer, and other DLL3-expressing NET cell lines in vitro. AMG 757-mediated redirected lysis was specific for DLL3-expressing cells. In patient-derived xenograft and orthotopic models of SCLC, single-dose AMG 757 effectively engaged human T cells administered systemically, leading to a significant increase in the number of human CD4+ and CD8+ T cells in primary and metastatic tumor lesions. Weekly administration of AMG 757 induced significant tumor growth inhibition of SCLC (figure 1) and other NET, including complete regression of established tumors and clearance of metastatic lesions. These findings warranted evaluation of AMG 757 (NCT03319940); the phase 1 study includes dose exploration (monotherapy and in combination with pembrolizumab) and dose expansion (monotherapy) in patients with SCLC (figure 2). A study of AMG 757 in patients with neuroendocrine prostate cancer is under development based on emerging data from the ongoing phase 1 study.Abstract 627 Figure 1AMG 757 Significantly reduced tumor growth in orthotopic SCLC mouse modelsAbstract 627 Figure 2AMG 757 Phase 1 study designConclusionsAMG 757 engages and activates T cells to kill DLL3-expressing SCLC and other NET cells in vitro and induces significant antitumor activity against established xenograft tumors in mouse models. These preclinical data support evaluation of AMG 757 in clinical studies of patients with NET.Ethics ApprovalAll in vivo work was conducted under IACUC-approved protocol #2009-00046.


2012 ◽  
Vol 209 (6) ◽  
pp. 1201-1217 ◽  
Author(s):  
Tadashi Yokosuka ◽  
Masako Takamatsu ◽  
Wakana Kobayashi-Imanishi ◽  
Akiko Hashimoto-Tane ◽  
Miyuki Azuma ◽  
...  

Programmed cell death 1 (PD-1) is a negative costimulatory receptor critical for the suppression of T cell activation in vitro and in vivo. Single cell imaging elucidated a molecular mechanism of PD-1–mediated suppression. PD-1 becomes clustered with T cell receptors (TCRs) upon binding to its ligand PD-L1 and is transiently associated with the phosphatase SHP2 (Src homology 2 domain–containing tyrosine phosphatase 2). These negative costimulatory microclusters induce the dephosphorylation of the proximal TCR signaling molecules. This results in the suppression of T cell activation and blockade of the TCR-induced stop signal. In addition to PD-1 clustering, PD-1–TCR colocalization within microclusters is required for efficient PD-1–mediated suppression. This inhibitory mechanism also functions in PD-1hi T cells generated in vivo and can be overridden by a neutralizing anti–PD-L1 antibody. Therefore, PD-1 microcluster formation is important for regulation of T cell activation.


2022 ◽  
Vol 12 ◽  
Author(s):  
Niels C. Lory ◽  
Mikolaj Nawrocki ◽  
Martina Corazza ◽  
Joanna Schmid ◽  
Valéa Schumacher ◽  
...  

Antigen recognition by the T-cell receptor induces a cytosolic Ca2+ signal that is crucial for T-cell function. The Ca2+ channel TRPM2 (transient receptor potential cation channel subfamily M member 2) has been shown to facilitate influx of extracellular Ca2+ through the plasma membrane of T cells. Therefore, it was suggested that TRPM2 is involved in T-cell activation and differentiation. However, these results are largely derived from in vitro studies using T-cell lines and non-physiologic means of TRPM2 activation. Thus, the relevance of TRPM2-mediated Ca2+ signaling in T cells remains unclear. Here, we use TRPM2-deficient mice to investigate the function of TRPM2 in T-cell activation and differentiation. In response to TCR stimulation in vitro, Trpm2-/- and WT CD4+ and CD8+ T cells similarly upregulated the early activation markers NUR77, IRF4, and CD69. We also observed regular proliferation of Trpm2-/- CD8+ T cells and unimpaired differentiation of CD4+ T cells into Th1, Th17, and Treg cells under specific polarizing conditions. In vivo, Trpm2-/- and WT CD8+ T cells showed equal specific responses to Listeria monocytogenes after infection of WT and Trpm2-/- mice and after transfer of WT and Trpm2-/- CD8+ T cells into infected recipients. CD4+ T-cell responses were investigated in the model of anti-CD3 mAb-induced intestinal inflammation, which allows analysis of Th1, Th17, Treg, and Tr1-cell differentiation. Here again, we detected similar responses of WT and Trpm2-/- CD4+ T cells. In conclusion, our results argue against a major function of TRPM2 in T-cell activation and differentiation.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A243-A243
Author(s):  
Thomas Thisted ◽  
Arnab Mukherjee ◽  
Kanam Malhotra ◽  
Zuzana Biesova ◽  
Yuliya Kleschenko ◽  
...  

BackgroundImmunotherapies, especially immune checkpoint inhibitors, have become a cornerstone of cancer treatment. Remarkable clinical responses have been observed blocking the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis across a spectrum of indications. However, innate and/or acquired resistance to anti-PD-1 blockade remains a major challenge. V-domain Ig suppressor of T-cell activation (VISTA) is a B7-family member, which promotes T-cell and myeloid quiescence and represents a promising target, particularly in combination with anti-PD-1/PD-L1 treatment. Recently, the interaction of VISTA with its receptor PSGL-1 was demonstrated to be significantly enhanced by the acidic tumor microenvironment (TME). As VISTA is highly expressed on myeloid cells, including those in the blood, antibodies binding VISTA at physiological pH 7.4 could result in rapid elimination from circulation through targeted-mediated drug disposition, making efficacious drug occupancy levels difficult to reach and potentially narrowing the therapeutic window. An antibody engineered to selectively bind and block VISTA at low pH in the TME may therefore be an ideal drug candidate.MethodsIn this study, fully human anti-VISTA antibodies were generated through pH-selective enrichment strategies of a yeast-based display library comprising highly diverse synthetic immune repertoires. The ‘parental’ antibodies have been extensively characterized using in vitro flow-cytometry, surface-plasmon resonance (SPR) and PSGL-1/VISTA inhibition assays in primary human CD4 and CD8 T-cells at pH 6.0 and pH 7.4. Eight parental antibodies were identified and tested for combinatorial efficacy with anti-PD-1 in vivo in human VISTA knock-in mice inoculated with syngeneic MC-38 tumors. These antibodies underwent further optimization for enhanced binding affinity at pH 6.0 and decreased binding at pH 7.4. ‘Progeny’ antibody ranking was based on the same in vitro and in vivo characterization as parental antibodies.ResultsEighty four parental antibodies were initially discovered. Flow-cytometry and SPR analysis revealed candidates displaying pH-dependent binding to endogenously expressed native VISTA on cells, and a PSGL-1/VISTA inhibition assay at pH 6.0 was run to identify and rank potent interface blockers. Eight candidate antibodies were tested in an in vivo intervention study in combination with anti-murine PD-1 demonstrating varied combinatorial efficacy with a subset leading to superior tumor rejection. Characterization of optimized progeny antibodies led to identification of anti-VISTA antibody SNS-101.ConclusionsEnrichment of highly diverse antibody libraries led to the identification of a pH-selective inhibitory anti-VISTA antibody SNS-101, which exerts excellent combinability with anti-PD-1 leading to superior anti-tumor activity in a mouse model.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e15056-e15056
Author(s):  
Diana I. Albu ◽  
Yan Qin ◽  
Xianzhe Wang ◽  
Vivian Li ◽  
Taeg Kim ◽  
...  

e15056 Background: Checkpoint blockade therapies targeting PD-1 and PD-L1 have shown great success for the treatment of various malignancies. However, a substantial fraction of patients with PD-L1-positive tumors remain unresponsive to these therapies. Novel therapy with significantly greater activity than the leading PD-1/PD-L1 inhibitors is expected to bring additional clinical benefit to patients. Here we describe the preclinical evaluation of CTX-8371, which combines anti-PD-1 and anti-PD-L1 monoclonal antibodies in one bispecific tetravalent molecule. Methods: The immune-enhancing activity of CTX-8371 was tested in vitro in T cell activation assays and tumor cell killing assay. CTX-8371 anti-tumor efficacy in vivo was assessed using mouse tumor cells expressing human PD-L1 implanted in transgenic mice humanized at the PD-1 and PD-L1 loci. CTX-8371 anti-tumor activity was also tested in xenograft tumor models. The mechanism of action of CTX-8371 was investigated in vitro using Jurkat cells expressing PD-1 or PD-L1, human PBMCs, and in vivo in tumor-bearing, chimeric PD-1/PD-L1 transgenic mice. CTX-8371 PK was determined in mice using an MSD ELISA-based assay and in cynomolgus monkeys using a qualified ELISA method. Dose range finding and toxicokinetic studies were performed in cynomolgus monkeys. Results: CTX-8371 potently enhanced T cell activation and function in vitro and showed curative efficacy as monotherapy in multiple solid tumor models, isografts or xenografts. Furthermore, CTX-8371 demonstrated superior anti-tumor efficacy compared to Keytruda or atezolizumab in checkpoint inhibitors-sensitive and resistant syngeneic mouse tumor models. Mechanistically, in addition to blocking PD-1 interaction with PD-L1, CTX-8371 bispecific antibody facilitated cell to cell bridging between cells expressing PD-1 and cells expressing PD-L1. Furthermore, we show that simultaneous binding of CTX-8371 to both PD-1 and PD-L1 resulted in long term PD-1 shedding. This suggests that CTX-8371 may prevent or overcome T cell exhaustion within the tumor microenvironment, thus providing additional advantage over existing therapies. Lastly, excellent tolerability was observed in non-human primates given 2 weekly drug infusions at up to 50 mg/kg dose. Conclusions: CTX-8371 displays multiple mechanisms of action over monoclonal PD1/PD-L1 blockade. These unique pharmacological properties of CTX-8371 could explain the enhanced T cell responses to tumor antigens and superior efficacy over current monoclonal antibody therapies. With favorable PK/PD and toxicology profiles in mice and cynomolgus monkeys, CTX-8371 warrants further advancement to clinical testing.


2000 ◽  
Vol 278 (6) ◽  
pp. L1221-L1230 ◽  
Author(s):  
Holger Garn ◽  
Anke Friedetzky ◽  
Andrea Kirchner ◽  
Ruth Jäger ◽  
Diethard Gemsa

In chronic silicosis, mechanisms leading to lymphocyte activation are still poorly understood, although it is well known that not only the lung but also the draining lymph nodes are affected. In the present study, we investigated T-cell activation by analysis of cytokine expression in the enlarged thoracic lymph nodes of rats 2 mo after an 8-day silica aerosol exposure. In the case of helper T cell (Th) type 1 cytokines, we found a significant increase in interferon (IFN)-γ mRNA expression, whereas interleukin (IL)-2 expression remained unchanged. In contrast, gene transcription for the Th2-type cytokines IL-4 and IL-10 was diminished. In addition, with use of an in vitro lymphocyte-macrophage coculture system, an enhanced IFN-γ and a reduced IL-10 release were shown with cells from silicotic animals. With regard to IFN-γ-inducing cytokines, we observed enhanced IL-12 mRNA levels in vivo, whereas IL-18 gene expression was slightly decreased. These data indicate that a persistent shift toward an IFN-γ-dominated type 1 (Th1/cytotoxic T cell type 1) T-cell reaction pattern occurred within the thoracic lymph nodes of silicotic animals. Thus a mutual activation of lymphocytes and macrophages may maintain the chronic inflammatory changes that characterize silicosis.


Sign in / Sign up

Export Citation Format

Share Document