scholarly journals A Tumor-Targeted Replicating Oncolytic Adenovirus Ad-TD-nsIL12 as a Promising Therapeutic Agent for Human Esophageal Squamous Cell Carcinoma

Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2438
Author(s):  
Zifang Zhang ◽  
Chunyang Zhang ◽  
Jinxin Miao ◽  
Zhizhong Wang ◽  
Zhimin Wang ◽  
...  

Esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers in China and existing therapies have been unable to significantly improve prognosis. Oncolytic adenoviruses (OAds) are novel promising anti-tumor drugs and have been evaluated in several cancers including ESCC. However, the antitumour efficacy of the first generation OAds (H101) as single agent is limited. Therefore, more effective OAds are needed. Our previous studies demonstrated that the novel oncolytic adenovirus Ad-TD-nsIL12 (human adenovirus type 5 with E1ACR2, E1B19K, E3gp19K-triple deletions)harboring human non-secretory IL-12 had significant anti-tumor effect, with no toxicity, in a Syrian hamster pancreatic cancer model. In this study, we evaluated the anti-tumor effect of Ad-TD-nsIL12 in human ESCC. The cytotoxicity of Ad-TD-nsIL12, H101 and cisplatin were investigated in two newly established patient-derived tumor cells (PDCs) and a panel of ESCC cell lines in vitro. A novel adenovirus-permissive, immune-deficient Syrian hamster model of PDCs subcutaneous xenograft was established for in vivo analysis of efficacy. The results showed that Ad-TD-nsIL12 was more cytotixic to and replicated more effectively in human ESCC cell lines than H101. Compared with cisplatin and H101, Ad-TD-nsIL12 could significantly inhibit tumor growth and tumor angiogenesis as well as enhance survival rate of animals with no side effects. These findings suggest that Ad-TD-nsIL12 has superior anti-tumor potency against human ESCC with a good safety profile.

2021 ◽  
Author(s):  
Liaoran Niu ◽  
Wanli Yang ◽  
Wei Zhou ◽  
Lili Duan ◽  
Xiaoqian Wang ◽  
...  

Abstract Background: Proliferation and metastasis are the major malignant phenotypes of esophageal squamous cell carcinoma (ESCC) and the main causes for poor survival in patients with ESCC. Nevertheless, the underlying mechanisms of ESCC proliferation and metastasis remains unclear. The high mobility group box protein family 3 (HMGB3) is one of the HMGB family members. It is critically involved in the occurrence and development of various carcinomas. However, the knowledge of HMGB3 in ESCC remains limited. In this study, we elucidated the role of HMGB3 in ESCC proliferation and metastasis, and the concrete mechanism. Methods: Expression level of HMGB3 and TGF-β interacting factor 2 (TGIF2) in ESCC cell lines and tissues was quantified by qRT-PCR, Western Blot, and immunohistochemistry. In vitro and in vivo assays revealed the functions of TGIF2 and HMGB3 in ESCC. RNA-seq was performed to search for the downstream signaling of HMGB3. ChIP assay and were performed to explore the relationship of HMGB3 and TGIF2. HMGB3-interacting protein was validated by immunoprecipitation.Results: Higher expression of TGIF2 and HMGB3 was observed in ESCC cell lines and tissues and was associated with worse prognosis of ESCC patients. TGIF2 and HMGB3 upregulation could promote ESCC proliferation and metastasis, and vice versa. TGIF2 and HMGB3 upregulation can activate Smad-dependent TGF-β signaling. TGIF2 can transcriptionally regulate HMGB3, and its TGF-β inducing capability and oncogenic role are at least partly HMGB3-dependent. Additionally, TLR3 was identified as a client protein of HMGB3, and their combination might be the reason of TGF-β activation. Conclusions: Collectively, HMGB3-dependent TGIF2 overexpression activates TGF-β signaling and promotes the proliferation and metastasis of ESCC via TLR3 regulation. These findings revealed that TGIF2 and HMGB3 could be prognostic indicators of ESCC and targeting TGIF2/HMGB3/TLR3 axis might improve the OS of ESCC patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenfeng Lu ◽  
Yun Dong ◽  
Qing Cui ◽  
Yuhan Wang ◽  
Xiwen Yang ◽  
...  

ObjectiveThis study aimed to investigate the role and potential regulatory mechanism of citron kinase (CIT) in esophageal squamous cell carcinoma (ESCC).MethodsCitron kinase (CIT) expression in ESCC tissues was analyzed based on the microarray dataset GSE20347, and CIT expression in ESCC cell lines was analyzed. Eca-109 cells were lentivirally transfected with shRNA-CIT (LV-shCIT) to knock down CIT, followed by investigation of cell proliferation and apoptosis. Nude mouse xenograft experiments were performed to evaluate the tumorigenicity of CIT-knockdown Eca-109 cells. Microarray analysis of Eca-109 cells transfected with LV-shCIT or LV-shNC and subsequent Ingenuity Pathway Analysis (IPA) were performed to identify CIT-related differentially expressed genes (DEGs) and signaling pathways. Furthermore, the expression of key DEGs was validated using the clinical samples of ESCC.ResultsCitron kinase (CIT) was highly expressed in ESCC tissues and cell lines. Knockdown of CIT suppressed Eca-109 cell proliferation and promoted apoptosis in vitro. Moreover, CIT knockdown significantly reduced tumorigenicity of Eca-109 cells in vivo. Microarray and IPA analysis showed that signaling by the Rho family GTPases pathway was significantly activated, and CIT intrinsically interacted with the protein kinase AMP-activated catalytic subunit alpha 1 (PRKAA1), sequestosome 1 (SQSTM1), and interleukin 6 (IL6). Notably, the expression levels of PRKAA1 and SQSTM1 were upregulated in ESCC tissues, while the IL6 expression was downregulated.ConclusionOur findings confirm that CIT functions as an oncogene in ESCC. CIT may contribute to ESCC development by upregulating PRKAA1 and SQSTM1 as well as downregulating IL6. Citron kinase may serve as a promising therapeutic target for ESCC.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1067
Author(s):  
Yen-Hao Chen ◽  
Shau-Hsuan Li ◽  
Hung-I Lu ◽  
Chien-Ming Lo

Stromal cell-derived factor-1α (SDF-1α) is a chemokine that has been reported to be involved in tumor progression in several malignancies. This study aimed to evaluate the crucial role of SDF-1α in patients with esophageal squamous cell carcinoma (ESCC) who underwent esophagectomy. A total of 169 patients with ESCC were identified, including overexpression of SDF-1α in 60 patients and low expression of SDF-1α in 109 patients by immunohistochemical analysis. Two ESCC cell lines, TE1 and KYSE30, were selected to evaluate the tumor cell proliferative effect of SDF-1α. Univariate and multivariate analyses showed that high tumor (T) status, positive lymph node metastasis, tumors located in the upper esophagus, and SDF-1α overexpression were significantly related to worse disease-free survival and overall survival. In addition, the two cell lines were treated with SDF-1α, AMD3100 (an SDF-1α-ligand receptor antagonist), and chemotherapeutic agents (cisplatin). Our in vitro study results showed that SDF-1α promoted the proliferation of tumor cells, and blocking the SDF-1α pathway displayed a growth inhibition effect in a dose-dependent manner. SDF-1α plays an important role in the progression of ESCC and is an independent prognostic factor for ESCC patients who underwent esophagectomy.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5971
Author(s):  
Anshuman Panda ◽  
Gyan Bhanot ◽  
Shridar Ganesan ◽  
Manisha Bajpai

Esophageal adenocarcinoma (EAC) is strongly associated with Barrett’s esophagus (BE), a pre-malignant condition resulting from gastric reflux. Esophageal squamous cell carcinoma (ESCC), the other major subtype of esophageal cancer, shows strong association with smoking and alcohol intake and no association with gastric reflux. In this study, we constructed and validated gene expression signatures of EAC vs. ESCC tumors using publicly available datasets, and subsequently assessed the enrichment levels of these signatures in commonly used EAC and ESCC cell lines, normal esophageal tissues and normal esophageal cell lines, and primary BE tissues and BE cell lines. We found that unlike ESCC cell lines which were quite similar to primary ESCC tumors, EAC cell lines were considerably different from primary EAC tumors but still more similar to EAC tumors than ESCC tumors, as the genes up in EAC vs. ESCC (EAChi) had considerably lower expression in EAC cell lines than EAC tumors. However, more surprisingly, unlike various normal cell lines (EPC2, Het-1A) which were very similar to various tissues from normal esophagus, BE cell lines (BAR-T, CP-A) were extremely different from primary BE tissues, as BE cell lines had substantially lower levels of EAChi and substantially higher levels of ESCChi gene expression. This ESCC-like profile of the BAR-T remained unaltered even after prolonged exposure to an acidic bile mixture in vitro resulting in malignant transformation of this cell line. However, primary BE tissues had EAC-like gene expression profiles as expected. Only one EAC case from the Cancer Genome Atlas resembled BE cell lines, and while it had the clinical profile and some mutational features of EAC, it had some mutational features, the copy number alteration profile, and the gene expression profile of ESCC instead. These incomprehensible changes in gene expression patterns may result in ambiguous changes in the phenotype and warrants careful evaluation to inform selection of appropriate in vitro tools for future studies on esophageal adenocarcinoma.


Author(s):  
Zhigeng Zou ◽  
Wei Zheng ◽  
Hongjun Fan ◽  
Guodong Deng ◽  
Shih-Hsin Lu ◽  
...  

Abstract Background Cancer stem cells (CSCs) are related to the patient’s prognosis, recurrence and therapy resistance in oesophageal squamous cell carcinoma (ESCC). Although increasing evidence suggests that aspirin (acetylsalicylic acid, ASA) could lower the incidence and improve the prognosis of ESCC, the mechanism(s) remains to be fully understood. Methods We investigated the role of ASA in chemotherapy/chemoprevention in human ESCC cell lines and an N-nitrosomethylbenzylamine-induced rat ESCC carcinogenesis model. The effects of combined treatment with ASA/cisplatin on ESCC cell lines were examined in vitro and in vivo. Sphere-forming cells enriched with putative CSCs (pCSCs) were used to investigate the effect of ASA in CSCs. Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) was performed to determine the alterations in chromatin accessibility caused by ASA in ESCC cells. Results ASA inhibits the CSC properties and enhances cisplatin treatment in human ESCC cells. ATAC-seq indicates that ASA treatment results in remarkable epigenetic alterations on chromatin in ESCC cells, especially their pCSCs, through the modification of histone acetylation levels. The epigenetic changes activate Bim expression and promote cell death in CSCs of ESCC. Furthermore, ASA prevents the carcinogenesis of NMBzA-induced ESCC in the rat model. Conclusions ASA could be a potential chemotherapeutic adjuvant and chemopreventive drug for ESCC treatment.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Jiwei Cheng ◽  
Haibo Ma ◽  
Ming Yan ◽  
Wenqun Xing

AbstractEsophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors in the digestive system with a high incidence and poor prognosis. Long non-coding RNAs (LncRNA) have been reported to be closely associated with the occurrence and development of various human cancers. Data from GSE89102 shows an increase of THAP9-AS1 expression in ESCC. However, its functions and mechanisms underlying ESCC progression remain to be investigated. In this study, we found that THAP9-AS1 was overexpressed in ESCC tissues and cells. High THAP9-AS1 expression was positively correlated with tumor size, TNM stage, lymph node metastasis, and worse prognosis. Functionally, depletion of THAP9-AS1 suppressed cell proliferation, migration, and invasion, while enhanced apoptosis in vitro. Consistently, knockdown of THAP9-AS1 inhibited xenograft tumor growth in vivo. Mechanistically, THAP9-AS1 could serve as a competing endogenous RNA (ceRNA) for miR-133b, resulting in the upregulation of SOX4. Reciprocally, SOX4 bound to the promoter region of THAP9-AS1 to activate its transcription. Moreover, the anti-tumor property induced by THAP9-AS1 knockdown was significantly impaired due to miR-133b downregulation or SOX4 overexpression. Taken together, our study reveals a positive feedback loop of THAP9-AS1/miR-133b/SOX4 to facilitate ESCC progression, providing a potential molecular target to fight against ESCC.


Author(s):  
Xuechao Jia ◽  
Chuntian Huang ◽  
Yamei Hu ◽  
Qiong Wu ◽  
Fangfang Liu ◽  
...  

Abstract Background Esophageal squamous cell carcinoma (ESCC) is an aggressive and lethal cancer with a low 5 year survival rate. Identification of new therapeutic targets and its inhibitors remain essential for ESCC prevention and treatment. Methods TYK2 protein levels were checked by immunohistochemistry. The function of TYK2 in cell proliferation was investigated by MTT [(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and anchorage-independent cell growth. Computer docking, pull-down assay, surface plasmon resonance, and kinase assay were used to confirm the binding and inhibition of TYK2 by cirsiliol. Cell proliferation, western blot and patient-derived xenograft tumor model were used to determine the inhibitory effects and mechanism of cirsiliol in ESCC. Results TYK2 was overexpressed and served as an oncogene in ESCC. Cirsiliol could bind with TYK2 and inhibit its activity, thereby decreasing dimer formation and nucleus localization of signal transducer and activator of transcription 3 (STAT3). Cirsiliol could inhibit ESCC growth in vitro and in vivo. Conclusions TYK2 is a potential target in ESCC, and cirsiliol could inhibit ESCC by suppression of TYK2.


2021 ◽  
Vol 22 (9) ◽  
pp. 4789
Author(s):  
Shintaro Fujihara ◽  
Hideki Kobara ◽  
Noriko Nishiyama ◽  
Kayo Hirose ◽  
Hisakazu Iwama ◽  
...  

Esophageal squamous cell carcinoma (ESCC) has a poor prognosis when diagnosed at an advanced stage, and early detection and treatment are essential to improve survival. However, intraobserver and interobserver variation make the diagnosis of superficial ESCC difficult, and suitable biomarkers are urgently needed. Here, we compared the microRNA (miRNA) expression profiles of superficial ESCC tissues and adjacent normal tissues obtained immediately before esophageal endoscopic submucosal dissection. We found that ESCC and normal tissues differed in their miRNA expression profiles. In particular, miR-21-5p and miR-146b-5p were significantly upregulated and miR-210-3p was significantly downregulated in tumor tissues compared with normal tissues. We also detected significant associations between miRNA expression and ESCC invasion depth and lymphovascular invasion. The same differential expression of miR-21-5p, miR-146b-5p, and miR-210-3p was detected in ESCC cell lines compared with normal esophageal epithelial cells in vitro. However, transfection of ESCC cells with miR-210-3p and miR-21-5p mimics or inhibitors had partial effects on cell proliferation and invasion in vitro. These results indicate that miRNA expression is significantly deregulated in superficial ESCC, and suggest that the potential contribution of differentially expressed miRNAs to the malignant phenotype should be further investigated.


Sign in / Sign up

Export Citation Format

Share Document