scholarly journals Production of High Silicon-Doped Hydroxyapatite Thin Film Coatings via Magnetron Sputtering: Deposition, Characterisation, and In Vitro Biocompatibility

Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 190 ◽  
Author(s):  
Samuel C. Coe ◽  
Matthew D. Wadge ◽  
Reda M. Felfel ◽  
Ifty Ahmed ◽  
Gavin S. Walker ◽  
...  

In recent years, it has been found that small weight percent additions of silicon to HA can be used to enhance the initial response between bone tissue and HA. A large amount of research has been concerned with bulk materials, however, only recently has the attention moved to the use of these doped materials as coatings. This paper focusses on the development of a co-RF and pulsed DC magnetron sputtering methodology to produce a high percentage Si containing HA (SiHA) thin films (from 1.8 to 13.4 wt.%; one of the highest recorded in the literature to date). As deposited thin films were found to be amorphous, but crystallised at different annealing temperatures employed, dependent on silicon content, which also lowered surface energy profiles destabilising the films. X-ray photoelectron spectroscopy (XPS) was used to explore the structure of silicon within the films which were found to be in a polymeric (SiO2; Q4) state. However, after annealing, the films transformed to a SiO44−, Q0, state, indicating that silicon had substituted into the HA lattice at higher concentrations than previously reported. A loss of hydroxyl groups and the maintenance of a single-phase HA crystal structure further provided evidence for silicon substitution. Furthermore, a human osteoblast cell (HOB) model was used to explore the in vitro cellular response. The cells appeared to prefer the HA surfaces compared to SiHA surfaces, which was thought to be due to the higher solubility of SiHA surfaces inhibiting protein mediated cell attachment. The extent of this effect was found to be dependent on film crystallinity and silicon content.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Christopher C. Evans ◽  
Katherine M. Day ◽  
Yi Chu ◽  
Bridget Garner ◽  
Kaori Sakamoto ◽  
...  

Abstract Background The Mongolian jird (Meriones unguiculatus) has long been recognized as a permissive host for the filarial parasite Brugia malayi; however, it is nonpermissive to another filarial parasite, canine heartworm (Dirofilaria immitis). By elucidating differences in the early response to infection, we sought to identify mechanisms involved in the species-specific clearance of these parasites. We hypothesized that the early clearance of D. immitis in intraperitoneal infection of the jird is immune mediated and parasite species dependent. Methods Jird peritoneal exudate cells (PECs) were isolated and their attachment to parasite larvae assessed in vitro under various conditions: D. immitis and B. malayi cultured separately, co-culture of both parasites, incubation before addition of cells, culture of heat-killed parasites, and culture with PECs isolated from jirds with mature B. malayi infection. The cells attaching to larvae were identified by immunohistochemistry. Results In vitro cell attachment to live D. immitis was high (mean = 99.6%) while much lower for B. malayi (mean = 5.56%). This species-specific attachment was also observed when both filarial species were co-cultured, with no significant change from controls (U(9, 14) = 58.5, p = 0.999). When we replicated these experiments with PECs derived from jirds subcutaneously infected with B. malayi, the results were similar (99.4% and 4.72% of D. immitis and B. malayi, respectively, exhibited cell attachment). Heat-killing the parasites significantly reduced cell attachment to D. immitis (mean = 71.9%; U(11, 14) = 7.5, p < 0.001) while increasing attachment to B. malayi (mean = 16.7%; U(9, 15) = 20, p = 0.002). Cell attachment to both species was reduced when larvae were allowed a 24-h pre-incubation period prior to the addition of cells. The attaching cells were identified as macrophages by immunohistochemistry. Conclusions These results suggest a strongly species-dependent response from which B. malayi could not confer protection by proxy in co-culture. The changes in cell attachment following heat-killing and pre-incubation suggest a role for excretory/secretory products in host immune evasion and/or antigenicity. The nature of this attachment is the subject of ongoing study and may provide insight into filarial host specificity.


Surfaces ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 106-114
Author(s):  
Yannick Hermans ◽  
Faraz Mehmood ◽  
Kerstin Lakus-Wollny ◽  
Jan P. Hofmann ◽  
Thomas Mayer ◽  
...  

Thin films of ZnWO4, a promising photocatalytic and scintillator material, were deposited for the first time using a reactive dual magnetron sputtering procedure. A ZnO target was operated using an RF signal, and a W target was operated using a DC signal. The power on the ZnO target was changed so that it would match the sputtering rate of the W target operated at 25 W. The effects of the process parameters were characterized using optical spectroscopy, X-ray diffraction, and scanning electron microscopy, including energy dispersive X-ray spectroscopy as well as X-ray photoelectron spectroscopy. It was found that stoichiometric microcrystalline ZnWO4 thin films could be obtained, by operating the ZnO target during the sputtering procedure at a power of 55 W and by post-annealing the resulting thin films for at least 10 h at 600 °C. As FTO coated glass substrates were used, annealing led as well to the incorporation of Na, resulting in n+ doped ZnWO4 thin films.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1282 ◽  
Author(s):  
Zhao ◽  
Li ◽  
Ai ◽  
Wen

A kind of devices Pt/Ag/ZnO:Li/Pt/Ti with high resistive switching behaviors were prepared on a SiO2/Si substrate by using magnetron sputtering method and mask technology, composed of a bottom electrode (BE) of Pt/Ti, a resistive switching layer of ZnO:Li thin film and a top electrode (TE) of Pt/Ag. To determine the crystal lattice structure and the Li-doped concentration in the resulted ZnO thin films, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) tests were carried out. Resistive switching behaviors of the devices with different thicknesses of Li-doped ZnO thin films were studied at different set and reset voltages based on analog and digital resistive switching characteristics. At room temperature, the fabricated devices represent stable bipolar resistive switching behaviors with a low set voltage, a high switching current ratio and a long retention up to 104 s. In addition, the device can sustain an excellent endurance more than 103 cycles at an applied pulse voltage. The mechanism on how the thicknesses of the Li-doped ZnO thin films affect the resistive switching behaviors was investigated by installing conduction mechanism models. This study provides a new strategy for fabricating the resistive random access memory (ReRAM) device used in practice.


2019 ◽  
Vol 9 (21) ◽  
pp. 4509
Author(s):  
Weijia Yang ◽  
Fengming Wang ◽  
Zeyi Guan ◽  
Pengyu He ◽  
Zhihao Liu ◽  
...  

In this work, we reported a comparative study of ZnO thin films grown on quartz glass and sapphire (001) substrates through magnetron sputtering and high-temperature annealing. Firstly, the ZnO thin films were deposited on the quartz glass and sapphire (001) substrates in the same conditions by magnetron sputtering. Afterwards, the sputtered ZnO thin films underwent an annealing process at 600 °C for 1 h in an air atmosphere to improve the quality of the films. X-ray diffraction, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectra, photoluminescence spectra, and Raman spectra were used to investigate the structural, morphological, electrical, and optical properties of the both as-received ZnO thin films. The ZnO thin films grown on the quartz glass substrates possess a full width of half maximum value of 0.271° for the (002) plane, a surface root mean square value of 0.50 nm and O vacancies/defects of 4.40% in the total XPS O 1s peak. The comparative investigation reveals that the whole properties of the ZnO thin films grown on the quartz glass substrates are comparable to those grown on the sapphire (001) substrates. Consequently, ZnO thin films with high quality grown on the quartz glass substrates can be achieved by means of magnetron sputtering and high-temperature annealing at 600 °C.


2019 ◽  
Vol 33 (15) ◽  
pp. 1950152 ◽  
Author(s):  
Jing Wu ◽  
Xiaofeng Zhao ◽  
Chunpeng Ai ◽  
Zhipeng Yu ◽  
Dianzhong Wen

To research the piezoresistive properties of SiC thin films, a testing structure consisting of a cantilever beam, SiC thin films piezoresistors and a Cr/Pt electrode is proposed in this paper. The chips of testing structure were fabricated by micro-electro-mechanical system (MEMS) technology on a silicon wafer with [Formula: see text]100[Formula: see text] orientation, in which SiC thin films were deposited by using radio-frequency (13.56 MHz) magnetron sputtering method. The effect of sputtering power, annealing temperature and time on the microstructure and morphology of the SiC thin films were investigated by the X-ray diffraction (XRD) and scanning electron microscopy (SEM). It indicates that a good continuity and uniform particles on the SiC thin film surface can be achieved at sputtering power of 160 W after annealing. To verify the existence of Si–C bonds in the thin films, X-ray photoelectron spectroscopy (XPS) was used. Meanwhile, the piezoresistive properties of SiC thin films piezoresistors were measured using the proposed cantilever beam. The test result shows that it is possible to achieve a gauge factor of 35.1.


2020 ◽  
Vol 532 ◽  
pp. 147403
Author(s):  
Hind Zegtouf ◽  
Nadia Saoula ◽  
Mourad Azibi ◽  
Samira Sali ◽  
Hanane Mechri ◽  
...  

Coatings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 551 ◽  
Author(s):  
Avishek Roy ◽  
Arun Kumar Mukhopadhyay ◽  
Sadhan Chandra Das ◽  
Gourab Bhattacharjee ◽  
Abhijit Majumdar ◽  
...  

Ternary carbide in metal matrix composites constitute a big challenge in the industry, and in this regard their surface treatment is one of the most important issues. Ternary carbide (CuxTiyCz, where x, y and z are integers) thin films are synthesized by magnetron sputtering and characterized with respect to the film depth. X-ray photoelectron spectroscopy (XPS) of Cu-2p and Ti-2p peaks shows the associated shake-up satellite peaks at a smaller film depth; the peak intensity is reduced at a higher depth. The relative intensity of Cu and Ti increases at a larger film depth. The optical band gap varies from 1.83 to 2.20 eV at different film depths.


2015 ◽  
Vol 1117 ◽  
pp. 139-142 ◽  
Author(s):  
Marius Dobromir ◽  
Radu Paul Apetrei ◽  
A.V. Rogachev ◽  
Dmitry L. Kovalenko ◽  
Dumitru Luca

Amorphous Nb-doped TiO2 thin films were deposited on (100) Si and glass substrates at room temperature by RF magnetron sputtering and a mosaic-type Nb2O5-TiO2 sputtering target. To adjust the amount of the niobium dopant in the film samples, appropriate numbers of Nb2O5 pellets were placed on the circular area of the magnetron target with intensive sputtering. By adjusting the discharge conditions and the number of niobium oxide pellets, films with dopant content varying between 0 and 16.2 at.% were prepared, as demonstrated by X-ray photoelectron spectroscopy data. The X-ray diffraction patterns of the as-deposited samples showed the lack of crystalline ordering in the samples. Surfaces roughness and energy band gap values increase with dopant concentration, as showed by atomic force microscopy and UV-Vis spectroscopy measurements.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
S. L. Iconaru ◽  
F. Ungureanu ◽  
A. Costescu ◽  
M. Costache ◽  
A. Dinischiotu ◽  
...  

Sucrose is a natural osmolyte accumulated in the cells of organisms as they adapt to environmental stress. In vitro sucrose increases protein stability and forces partially unfolded structures to refold. Thin films of sucrose (C12H22O11) were deposited on thin cut glass substrates by the thermal evaporation technique (P∼10−5torr). Characteristics of thin films were put into evidence by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), scanning electron microscopy (SEM), and differential thermal analysis and thermal gravimetric analysis (TG/DTA). The experimental results confirm a uniform deposition of an adherent layer. In this paper we present a part of the characteristics of sucrose thin films deposited on glass in medium vacuum conditions, as a part of a culture medium for osteoblast cells. Osteoblast cells were used to determine proliferation, viability, and cytotoxicity interactions with sucrose powder and sucrose thin films. The osteoblast cells have been provided from the American Type Culture Collection (ATCC) Centre. The outcome of this study demonstrated the effectiveness of sucrose thin films as a possible nontoxic agent for biomedical applications.


2005 ◽  
Vol 475-479 ◽  
pp. 1647-1650 ◽  
Author(s):  
Xin Gang Yu ◽  
Hong Wen Ma ◽  
Fei Long ◽  
Hui Feng Zhao ◽  
Wenrue Bi ◽  
...  

Through X-ray photoelectron spectroscopy, by the aid of Ar+ sputtering, chemical composition and the valence state of elements on surface and at depth of TiO2-SiO2 thin films and metal substrates have been studied. Results show that: on surface, elements of Cr, Mn, Ti, Fe exist in the form of their respective stable state, but Si is unstable and exhibits stoichiometrical disturbance when heat treated at 800°C; at depth, after sputtering for 5 minutes and 17 minutes, elements of Cr, Mn, Ti and Ni exist in the form of their respective stable state, but Si and Fe are unstable and exhibit stoichiometrical disturbances; at depth, after sputtering for 57 minutes, all of the Cr, Mn, Ti, Si, Ni and Fe exist in the form of their respective stable state. Results of chemical composition and their content by weight percent of TiO2-SiO2 thin films and metal substrates reveal that: Fe, Cr, and Mn diffuse from metal substrates to the thin films in scale; Ni diffuses few and Si collects to the metal substrate surface


Sign in / Sign up

Export Citation Format

Share Document