scholarly journals Stress Analysis of Multilayered Coatings Subjected to Surface Point Contact Loading Based on Its Three-Dimensional Elastic Field Solution

Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 838
Author(s):  
Tingjian Wang ◽  
Yue Wu ◽  
Zhihui Qi ◽  
Yang Zhao ◽  
Jingjing Zhang ◽  
...  

In order to investigate the effect of the structural layout of multilayered coatings on its mechanical behavior, a three-dimensional elastic field solution is developed for multilayered solids subjected to surface point contact loading, which is converted from the elastic field solution in frequency domain by using a numerical conversion algorithm. The elastic field solution in frequency domain is obtained by numerically solving a group of linear equations involving the unknown constants in the general elastic field solution of layered material that is obtained by using Fourier integral transform technique. The present solution is validated by comparing with the exact analytical solution for uncoated solids and finite element solution for solids coated with 30 layers. Lastly, the effect of structural layout of multilayered coatings is further investigated with present solution. The result shows that the gradient structural layout with elasticity modulus decreasing gradually from the top layer to the substrate, which is preferable to a larger friction coefficient for multilayered solids subjected to surface line contact loading, is preferable for a smaller friction coefficient <0.1 for multilayered solids subjected to surface point contact loading, and the gradient structural layout with elasticity modulus increasing first in the top layers and then decreasing in the bottom layers, which is preferable to a smaller friction coefficient for multilayered solids subjected to surface line contact loading, is preferable for a friction coefficient >0.2.

2020 ◽  
Vol 15 (4) ◽  
pp. 543-549
Author(s):  
Haydar Kepekci ◽  
Ergin Kosa ◽  
Cüneyt Ezgi ◽  
Ahmet Cihan

Abstract The brake system of an automobile is composed of disc brake and pad which are co-working components in braking and accelerating. In the braking period, due to friction between the surface of the disc and pad, the thermal heat is generated. It should be avoided to reach elevated temperatures in disc and pad. It is focused on different disc materials that are gray cast iron and carbon ceramics, whereas pad is made up of a composite material. In this study, the CFD model of the brake system is analyzed to get a realistic approach in the amount of transferred heat. The amount of produced heat can be affected by some parameters such as velocity and friction coefficient. The results show that surface temperature for carbon-ceramic disc material can change between 290 and 650 K according to the friction coefficient and velocity in transient mode. Also, if the disc material gray cast iron is selected, it can change between 295 and 500 K. It is claimed that the amount of dissipated heat depends on the different heat transfer coefficient of gray cast iron and carbon ceramics.


Author(s):  
Eduardo de la Guerra Ochoa ◽  
Javier Echávarri Otero ◽  
Enrique Chacón Tanarro ◽  
Benito del Río López

This article presents a thermal resistances-based approach for solving the thermal-elastohydrodynamic lubrication problem in point contact, taking the lubricant rheology into account. The friction coefficient in the contact is estimated, along with the distribution of both film thickness and temperature. A commercial tribometer is used in order to measure the friction coefficient at a ball-on-disc point contact lubricated with a polyalphaolefin base. These data and other experimental results available in the bibliography are compared to those obtained by using the proposed methodology, and thermal effects are analysed. The new approach shows good accuracy for predicting the friction coefficient and requires less computational cost than full thermal-elastohydrodynamic simulations.


Author(s):  
Sahar Ghatrehsamani ◽  
Saleh Akbarzadeh

Wear coefficient and friction coefficient are two of the key parameters in the performance of any tribo-system. The main purpose of the present research is to use continuum damage mechanics to predict wear coefficient. Thus, a contact model is utilized that can be used to obtain the friction coefficient between the contacting surfaces. By applying this model to the continuum damage mechanics model, the wear coefficient between dry surfaces is predicted. One of the advantages of using this model is that the wear coefficient can be numerically predicted unlike other methods which highly rely on experimental data. In order to verify the results predicted by this model, tests were performed using pin-on-disk test rig for several ST37 samples. The results indicated that the wear coefficient increases with increasing the friction coefficient.


2021 ◽  
pp. 1-35
Author(s):  
Chunlin Wu ◽  
Liangliang Zhang ◽  
Huiming Yin

Abstract The paper extends the recent work (JAM, 88, 061002, 2021) of the Eshelby's tensors for polynomial eigenstrains from a two dimensional (2D) to three dimensional (3D) domain, which provides the solution to the elastic field with continuously distributed eigenstrain on a polyhedral inclusion approximated by the Taylor series of polynomials. Similarly, the polynomial eigenstrain is expanded at the centroid of the polyhedral inclusion with uniform, linear and quadratic order terms, which provides tailorable accuracy of the elastic solutions of polyhedral inhomogeneity by using Eshelby's equivalent inclusion method. However, for both 2D and 3D cases, the stress distribution in the inhomogeneity exhibits a certain discrepancy from the finite element results at the neighborhood of the vertices due to the singularity of Eshelby's tensors, which makes it inaccurate to use the Taylor series of polynomials at the centroid to catch the eigenstrain at the vertices. This paper formulates the domain discretization with tetrahedral elements to accurately solve for eigenstrain distribution and predict the stress field. With the eigenstrain determined at each node, the elastic field can be predicted with the closed-form domain integral of Green's function. The parametric analysis shows the performance difference between the polynomial eigenstrain by the Taylor expansion at the centroid and the 𝐶0 continuous eigenstrain by particle discretization. Because the stress singularity is evaluated by the analytical form of the Eshelby's tensor, the elastic analysis is robust, stable and efficient.


2003 ◽  
Vol 17 (27n28) ◽  
pp. 1405-1416
Author(s):  
A. I. D'YACHENKO ◽  
V. YU. TARENKOV ◽  
M. A. BELOGOLOVSKII ◽  
V. N. VARYUKHIN ◽  
A. V. ABAL'OSHEV ◽  
...  

We report on tunneling and Andreev-reflection conductance spectra of 39 K superconducting magnesium diboride, obtained with Pb and Au counter-electrodes. Two distinct steps at close to 2.7 and 7.1 meV appear in a low-resistance metallic-type Au–MgB 2 junction characteristic, whereas a tunneling-like spectrum measured for the same junction, annealed by the application of DC current, exhibits only a rounded contribution of the larger gap. Junctions with a superconducting lead counter-electrode pressed into a bulk MgB 2 sample reveal two conductance peaks that are interpreted as the result of the formation of a highly-transmitting break junctions inside the magnesium diboride ceramic. Our results strongly support the two-band model with two different gap values on quasi-two-dimensional σ (7.1 meV) and three-dimensional π (2.7 meV) Fermi surface sheets of MgB 2.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245245
Author(s):  
Yun-Feng Liu ◽  
Ke Gu ◽  
Yi-Ming Shu ◽  
Xian-Lei Zhang ◽  
Xin-Xin Liu ◽  
...  

As a type of flexible impermeable material, a PVC geomembrane must be cooperatively used with cushion materials. The contact interface between a PVC geomembrane and cushion easily loses stability. In this present paper, we analyzed the shear models and parameters of the interface to study the stability. Two different cushion materials were used: the common extrusion sidewall and non-fines concrete. To simulate real working conditions, flexible silicone cushions were added under the loading plates to simulate hydraulic pressure loading, and the loading effect of flexible silicone cushions was demonstrated by measuring the actual contact areas under different normal pressures between the geomembrane and cushion using the thin-film pressure sensor. According to elastomer shear stress, there are two main types of shear stress between the PVC geomembrane and the cushion: viscous shear stress and hysteresis shear stress. The viscous shear stress between the geomembrane and the cement grout was measured using a dry, smooth concrete sample, then the precise formula parameters of the viscous shear stress and viscous friction coefficient were obtained. The hysteresis shear stress between the geomembrane and the cushion was calculated by subtracting the viscous shear stress from the total shear stress. The formula parameters of the hysteresis shear stress and hysteresis friction coefficient were calculated. The three-dimensional box-counting dimensions of the cushion surface were calculated, and the formula parameters of the hysteresis friction were positively correlated with the three-dimensional box dimensions.


1944 ◽  
Vol 11 (3) ◽  
pp. A149-A161
Author(s):  
Gabriel Kron

Abstract This paper presents equivalent circuits representing the partial differential equations of the theory of elasticity for bodies of arbitrary shapes. Transient, steady-state, or sinusoidally oscillating elastic-field phenomena may now be studied, within any desired degree of accuracy, either by a “network analyzer,” or by numerical- and analytical-circuit methods. Such problems are the propagation of elastic waves, determination of the natural frequencies of vibration of elastic bodies, or of stresses and strains in steady-stressed states. The elastic body may be non-homogeneous, may have arbitrary shape and arbitrary boundary conditions, it may rotate at a uniform angular velocity and may, for representation, be divided into blocks of uneven length in different directions. The circuits are developed to handle both two- and three-dimensional phenomena. They are expressed in all types of orthogonal curvilinear reference frames in order to simplify the boundary relations and to allow the solution of three-dimensional problems with axial and other symmetry by the use of only a two-dimensional network. Detailed circuits are given for the important cases of axial symmetry, cylindrical co-ordinates (two-dimensional) and rectangular co-ordinates (two- and three-dimensional). Nonlinear stress-strain relations in the plastic range may be handled by a step-by-step variation of the circuit constants. Nonisotropic bodies and nonorthogonal reference frames, however, require an extension of the circuits given. The circuits for steady-state stress and small oscillation phenomena require only inductances and capacitors, while the circuits for transients require also standard (not ideal) transformers. A companion paper deals in detail with numerical and experimental methods to solve the equivalent circuits.


Author(s):  
Walter Sextro

Abstract In many technical contacts energy is dissipated because of dry friction and relative motion. This can be used to reduce the vibration amplitudes. For example, shrouds with friction interfaces are used to reduce the dynamic stresses in turbine blades. The three-dimensional motion of the blades results in a three-dimensional relative motion of the contact planes. The developed Point-Contact-Model is used to calculate the corresponding tangential and normal forces for each contact element. This Point-Contact-Model includes the roughness of the contact surfaces, the normal pressure distribution due to roughness, the stiffness in normal and tangential direction and dry friction. An experiment with two non-Hertzian contacts is used to verify the developed contact model. The comparison between measured and calculated frequency response functions for three-dimensional forced vibrations of the elastic structures shows a very good agreement.


Sign in / Sign up

Export Citation Format

Share Document