scholarly journals G-Doping-Based Metal-Semiconductor Junction

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 945
Author(s):  
Avtandil Tavkhelidze ◽  
Larissa Jangidze ◽  
Zaza Taliashvili ◽  
Nima E. Gorji

Geometry-induced doping (G-doping) has been realized in semiconductors nanograting layers. G-doping-based p-p(v) junction has been fabricated and demonstrated with extremely low forward voltage and reduced reverse current. The formation mechanism of p-p(v) junction has been proposed. To obtain G-doping, the surfaces of p-type and p+-type silicon substrates were patterned with nanograting indents of depth d = 30 nm. The Ti/Ag contacts were deposited on top of G-doped layers to form metal-semiconductor junctions. The two-probe method has been used to record the I–V characteristics and the four-probe method has been deployed to exclude the contribution of metal-semiconductor interface. The collected data show a considerably lower reverse current in p-type substrates with nanograting pattern. In the case of p+-type substrate, nanograting reduced the reverse current dramatically (by 1–2 orders of magnitude). However, the forward currents are not affected in both substrates. We explained these unusual I–V characteristics with G-doping theory and p-p(v) junction formation mechanism. The decrease of reverse current is explained by the drop of carrier generation rate which resulted from reduced density of quantum states within the G-doped region. Analysis of energy-band diagrams suggested that the magnitude of reverse current reduction depends on the relationship between G-doping depth and depletion width.

1996 ◽  
Vol 448 ◽  
Author(s):  
E. Kamińska ◽  
A. Piotrowska ◽  
S. Kasjaniuk ◽  
S. Gierlotka

AbstractThe relationship between electrical properties and microstructure of pure Zn and Au(Zn) contacts to p-GaAs has been studied. Thermally activated changes in ФB correlate with structural processes at MS interfaces. For Zn/GaAs contacts, lowering of ФB from 0.63 eV to 0.35 eV corresponds to the penetration of Zn into the native oxide layer. In AuZn/p-GaAs contacts, β-AuZn phase is responsible for the formation of ФB=0.4 eV in as-deposited contacts. The onset of the ohmic behaviour of Au(Zn)/p-GaAs contacts (ФB=0.3 eV) coincides with the appearance of α3-AuZn phase for Zn content less than 20 at.% or α1-AuZn, for higher Zn concentrations.The obtained results prove that the mechanism responsible for the formation of low-resistance Zn -based contacts to p-type GaAs is associated with the lowering of the Schottky barrier at the metal/semiconductor interface. We suggest that the ultimate properties of these contacts are determined by the presence of a single, specific phase in a direct contact with the semiconductor.


2003 ◽  
Vol 766 ◽  
Author(s):  
V. Ligatchev ◽  
T.K.S. Wong ◽  
T.K. Goh ◽  
Rusli Suzhu Yu

AbstractDefect spectrum N(E) of porous organic dielectric (POD) films is studied with capacitance deep-level-transient-spectroscopy (C-DLTS) in the energy range up to 0.7 eV below conduction band bottom Ec. The POD films were prepared by spin coating onto 200mm p-type (1 – 10 Δcm) single-side polished silicon substrates followed by baking at 325°C on a hot plate and curing at 425°C in furnace. The film thickness is in the 5000 – 6000 Å range. The ‘sandwich’ -type NiCr/POD/p-Si/NiCr test structures showed both rectifying DC current-voltage characteristics and linear 1/C2 vs. DC reverse bias voltage. These confirm the applicability of the C-DLTS technique for defect spectrum deconvolution and the n-type conductivity of the studied films. Isochronal annealing (30 min in argon or 60 min in nitrogen) has been performed over the temperature range 300°C - 650°C. The N(E) distribution is only slightly affected by annealing in argon. However, the distribution depends strongly on the annealing temperature in nitrogen ambient. A strong N(E) peak at Ec – E = 0.55 – 0.60 eV is detected in all samples annealed in argon but this peak is practically absent in samples annealed in nitrogen at Ta < 480°C. On the other hand, two new peaks at Ec – E = 0.12 and 0.20 eV appear in the N(E) spectrum of the samples annealed in nitrogen at Ta = 650°C. The different features of the defect spectrum are attributed to different interactions of argon and nitrogen with dangling carbon bonds on the intra-pore surfaces.


2018 ◽  
Vol 84 (3) ◽  
pp. 30301 ◽  
Author(s):  
Wided Zerguine ◽  
Djamila Abdi ◽  
Farid Habelhames ◽  
Meriem Lakhdari ◽  
Hassina Derbal-Habak ◽  
...  

Effect of the annealing oxidation time of electrodeposited lead (Pb) on the phase formation of lead oxide (PbO) films is reported. The phase structure, optical properties, size and morphology of the films were investigated by scanning electron microscopy, X-ray diffraction and UV-vis spectroscopy. The relationship between structur and photoelectrochemical properties was investigated. Thin films of PbO produced via air annealing of electrodeposited lead consist of a mixture of two phases, orthorhombic (o-PbO) and tetragonal (t-PbO), that determine the material properties and effectiveness as absorber layer in a photoelectrochemical device. The proportion of tetragonal t-PbO increases for longer heat treatments. After 40 h, the sample consists mainly of tetragonal t-PbO. The p-type semiconducting behavior of lead oxide was studied by photocurrent measurements. Different heat treatments yield variations in the ratio of tetragonal to orthorhombic lead oxide that effect on device performances, where devices with a higher content of tetragonal t-PbO show higher photocurrent than with the orthorhombic phase.


2015 ◽  
Vol 22 (02) ◽  
pp. 1550027 ◽  
Author(s):  
NADIR. F. HABUBI ◽  
RAID. A. ISMAIL ◽  
WALID K. HAMOUDI ◽  
HASSAM. R. ABID

In this work, n- ZnO /p- Si heterojunction photodetectors were prepared by drop casting of ZnO nanoparticles (NPs) on single crystal p-type silicon substrates, followed by (15–60) min; step-annealing at 600∘C. Structural, electrical, and optical properties of the ZnO NPs films deposited on quartz substrates were studied as a function of annealing time. X-ray diffraction studies showed a polycrystalline, hexagonal wurtizte nanostructured ZnO with preferential orientation along the (100) plane. Atomic force microscopy measurements showed an average ZnO grain size within the range of 75.9 nm–99.9 nm with a corresponding root mean square (RMS) surface roughness between 0.51 nm–2.16 nm. Dark and under illumination current–voltage (I–V) characteristics of the n- ZnO /p- Si heterojunction photodetectors showed an improving rectification ratio and a decreasing saturation current at longer annealing time with an ideality factor of 3 obtained at 60 min annealing time. Capacitance–voltage (C–V) characteristics of heterojunctions were investigated in order to estimate the built-in-voltage and junction type. The photodetectors, fabricated at optimum annealing time, exhibited good linearity characteristics. Maximum sensitivity was obtained when ZnO / Si heterojunctions were annealed at 60 min. Two peaks of response, located at 650 nm and 850 nm, were observed with sensitivities of 0.12–0.19 A/W and 0.18–0.39 A/W, respectively. Detectivity of the photodetectors as function of annealing time was estimated.


1986 ◽  
Vol 67 ◽  
Author(s):  
Chris R. Ito ◽  
M. Feng ◽  
V. K. Eu ◽  
H. B. Kim

ABSTRACTA high-volume epitaxial reactor has been used to investigate the feasibility for the production growth of GaAs on silicon substrates. The reactor is a customized system which has a maximum capacity of 39 three-inch diameter wafers and can accommodate substrates as large as eight inches in diameter. The MOCVD material growth technique was used to grow GaAs directly on p-type, (100) silicon substrates, three and five inches in diameter. The GaAs surfaces were textured with antiphase boundaries. Double-cyrstal rocking curve measurements showed single-cyrstal GaAs with an average FWHMof 520 arc seconds measured at four points over the wafer surface. Within-wafer thickness uniformity was ± 4% with a wafer-to-wafer uniformity of ± 2%. Photoluminescence spectra showed Tour peaks at 1.500, 1.483, 1.464, and 1.440 ev. Schottky diodes were fabricated on the GaAs on silicon material.


2018 ◽  
pp. 1800562
Author(s):  
Lisa Liborius ◽  
Fabian Heyer ◽  
Khaled Arzi ◽  
Claudia Speich ◽  
Werner Prost ◽  
...  

2018 ◽  
Vol 66 (45) ◽  
pp. 11981-11989 ◽  
Author(s):  
Banggui Cheng ◽  
Xiaohui Wang ◽  
Qixuan Lin ◽  
Xiao Zhang ◽  
Ling Meng ◽  
...  

2014 ◽  
Vol 624 ◽  
pp. 129-133 ◽  
Author(s):  
Abbas M. Selman ◽  
Zainuriah Hassan

Effects of annealing treatment on growth of rutile TiO2nanorods on structural, morphological and optical properties of TiO2nanorods were investigated. The nanorods were fabricated on p-type (111)-oriented silicon substrates and, all substrates were seeded with a TiO2seed layer synthesized by radio-frequency reactive magnetron sputtering system. Chemical bath deposition (CBD) was carried out to grow rutile TiO2nanorods on Si substrate at different annealing temperatures (350, 550, 750, and 950 °C). Raman spectroscopy, X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) analyses showed the tetragonal rutile structure of the synthesized TiO2nanorods. Optical properties were examined by photoluminescence spectroscopy. The spectra exhibit one strong UV emission peak which can be seen at around 390 nm for all of the samples. In the visible region, TiO2demonstrated two dominant PL emissions centered at around 519 and 705 nm. The experimental results showed that the TiO2nanorods annealed at 550 °C exhibited the optimal structural properties. Moreover, the CBD method enabled the formation of photosensitive, high-quality rutile TiO2nanorods with few defects for future optoelectronic nanodevice applications.


2009 ◽  
Vol 7 (4) ◽  
pp. 286-290 ◽  
Author(s):  
Sungbong Park Sungbong Park ◽  
Shinya Takita Shinya Takita ◽  
Yasuhiko Ishikawa Yasuhiko Ishikawa ◽  
Jiro Osaka Jiro Osaka ◽  
and Kazumi Wada Kazumi Wada

2020 ◽  
Vol 8 (1) ◽  
pp. 201-208 ◽  
Author(s):  
Taikyu Kim ◽  
Jeong-Kyu Kim ◽  
Baekeun Yoo ◽  
Hongwei Xu ◽  
Sungyeon Yim ◽  
...  

Metal–interlayer–semiconductor contact reduces metal-induced gap states, mitigating Fermi-level pinning at metal/semiconductor interface. Here, switching property of p-type SnO FET is enhanced by increasing electron Schottky barrier at off-state.


Sign in / Sign up

Export Citation Format

Share Document