scholarly journals Comparative Investigation on Corrosion Resistance of Stainless Steels Coated with Titanium Nitride, Nitrogen Titanium Carbide and Titanium-Diamond-like Carbon Films

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1543
Author(s):  
Jia Lou ◽  
Zonglong Gao ◽  
Jie Zhang ◽  
Hao He ◽  
Xinming Wang

In this study, the corrosion resistance of titanium nitride (TiN), nitrogen titanium carbide (TiCN) and titanium-diamond-like carbon (Ti-DLC) films deposited on 316L stainless steel (SS) were compared via differences in the surface and section-cross morphologies, open circuit potential tests, electrochemical impedance spectroscopy and potentiometric tests. The corrosion resistance of the TiCN and Ti-DLC films significantly improved because of the titanium carbide (TiC) crystals that obstruct the corrosive species penetrating the as-deposited film in the electrolyte atmosphere. TiN exhibited the lowest corrosion resistance because of its low thickness and high volume of defects. The Ti-DLC film showed the lowest corrosion current density (approximately 4.577 μA/cm2) and thickness reduction (approximately 0.12 μm) in different electrolytes, particularly those with high Cl− and H+ concentrations, proving to be the most suitable corrosion protection material for 316L SS substrates.

Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 724 ◽  
Author(s):  
Zhang ◽  
Hong ◽  
Lin ◽  
Zheng

The corrosion behavior of unsealed and sealed high-velocity oxygen-fuel (HVOF)-sprayed nanostructured WC-CoCr cermet coatings under different corrosive environments was investigated using scanning electron microscopy (SEM), open circuit potential (OCP), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Ultrasonic excitation sealing with aluminum phosphate was performed in an external ultrasonic bath with the frequency of 40 kHz at atmospheric pressure and room temperature. SEM micrographs revealed that the exposed area of the coating was effectively reduced by the coverage of aluminum phosphate sealant on the majority of pores. Electrochemical measurements demonstrated that the sealant with the help of ultrasonic energy could shift the corrosion potential to a more noble direction, reduce the corrosion current density, increase the resistance of charge transfer, and effectively improve the corrosion resistance of the coating in both 3.5 wt % NaCl and 1 mol·L−1 HCl solutions.


2020 ◽  
pp. 1-11
Author(s):  
Sofiane Sedira ◽  
Bilel Mendaci

BACKGROUND: Titanium nitride (TiN), titanium carbide (TiC) and titanium carbonitride (TiNC) thin films show promising practical applications due to their photoelectric properties and corrosion behaviour. OBJECTIVE: In this work, we investigated the factors which may affect the optical properties and the corrosion behaviour of these coatings. METHODS: The titanium coatings were carried out by sputtering using the target of Ti6Al4V (purity 99.96%) with different N2, CH4 and Ar partial pressures. XRD, FTIR, Raman and SEM with EDX studies show the formation of titanium nitride, titanium carbide coatings. Uv-vis spectroscopy was carried out to estimate the optical properties using the numerical Swanepoel method. Potentiodynamic polarization studies in Hank’s solution show that the corrosion resistance is found to be in the order of C-TiN(2) > C-TiN(1) > TiN > TiC. RESULTS: A high protective efficiency was determined (60%) when comparing TiNC(2) and TiC corrosion current densities, which confirms the lower corrosion velocity and the higher passivation stability of the coatings composed with TiN and TiC phases. Electrochemical impedance spectroscopy studies show that the Rct increases in the following order: TiC < TiN < C-TiN(1) < C-TiN(2), highlighting the fact that C-TiN(2) coating has the higher corrosion resistance.


2020 ◽  
Author(s):  
Carolina Assis do Nascimento

The aim of this study was to compare the surface micromorphology and corrosion resistance of diferent temporary anchoragedevices (TADs) composed of titanium alloy (SIN®) and stainless steel (DAT Steel® and Bio Ray®). Ten samples of eachTAD were submitted to qualitative analyses using energy-dispersive and scanning electronic microscopy before and afterimmersion in artifcial saliva (1500 ppm of fuoride) for 30 days. The chemical analysis was done by X-ray fuorescence,and the corrosion tests were performed by electrochemical means (open circuit potential—OCP, potentiostat, and electrochemical impedance spectroscopy—EIS, using anodic potentiodynamic polarization curves). Passive flm resistance (PFR)and corrosion current were established. The corrosion rate was determined by the mass loss test. Greater smoothness andfewer machining defects were observed for the stainless steel TAD before artifcial saliva immersion. Comparatively, highercorrosion resistance was found for titanium alloy TAD after immersion in saliva. There was no release of ions into the TADwhen immersed in artifcial saliva. ANOVA and Tukey tests showed that OCP (V) was signifcantly lower for the titaniumalloy TAD (p=0.030) than the stainless steel brands. Epite (V) and Epite−OCP (V) were signifcantly higher for the titaniumalloy TAD (p=0.0009 and p=0.0005, respectively). Stainless steel TADs presented lower roughness surface than titaniumalloy TAD, although the latter presented higher corrosion resistance than the former


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1139 ◽  
Author(s):  
Yuqiang Feng ◽  
Zexu Du ◽  
Zhengfei Hu

In this paper, an equiatomic NiTi (55NiTi) alloy powder was mixed with pure Ni powder to prepare laser cladding coatings on a 316L stainless steel substrate to study the effect of Ni addition on the microstructure and corrosion resistance of the coatings. The microstructure and phase composition of the coatings were analyzed using a scanning electron microscope (SEM) with configured energy-dispersive spectrometer (EDS) and X-ray diffractometer (XRD). OCP (open-circuit potential), PD (potentiodynamic polarization) and EIS (electrochemical impedance spectroscopy) experiments were conducted by a Gamry electrochemical workstation, and corresponding eroded morphologies were observed to evaluate the coating’s anti-corrosion performance. The addition of Ni led to fine and uniform dendrites and dense microstructure under the metallurgical microscope, which were beneficial for the formation of the passive film mainly consisting of titanium dioxide (TiO2). The results show that the pitting potential of the 55NiTi + 5Ni coating was 0.11 V nobler than that of the 55NiTi coating, and the corrosion current density was less than half that of the 55NiTi coating. The corrosion initiated preferentially at the interfaces of dendrites and inter-dendritic areas, then spread first to dendrites rather than in the inter-dendritic areas.


Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 405
Author(s):  
Walter Giurlani ◽  
Patrick Marcantelli ◽  
Francesco Benelli ◽  
Daniele Bottacci ◽  
Filippo Gambinossi ◽  
...  

Noble metal coatings are commonly employed to improve corrosion resistance of metals in the electronic and jewellery industry. The corrosion resistance of electroplated goods is currently determinate with long, destructive and almost subjective interpretation corrosion tests in artificial atmosphere. In this study we present the application of electrochemical analysis to obtain fast and numerical information of the antiaging coating. We performed open circuit potential (OCP) and corrosion current measurement; we employed also the electrochemical impedance spectroscopy (EIS), commonly applied to organic or passivated metal with high-impedance, to find the best option for noble low-impedance coating analysis. For comparison, traditional standardized tests (damp heat ISO 17228, salt spray ISO 9227 and sulphur dioxide ISO 4524) were also performed.


2005 ◽  
Vol 11 (S03) ◽  
pp. 82-85 ◽  
Author(s):  
E. T. Uzumaki ◽  
C. S. Lambert ◽  
A. R. Santos Jr. ◽  
C. A. C. Zavaglia

Diamond-like carbon (DLC) films have been intensively studied with a view to improving orthopaedic implants. Studies have indicated smoothness of the surface, low friction, high wear resistance, corrosion resistance and biocompatibility [1-4]. DLC coatings can be deposited using various techniques, such as plasma assisted chemical vapour deposition (PACVD), magnetron sputtering, laser ablation, and others [5]. However it has proved difficult to obtain films which exhibit good adhesion. The plasma immersion process, unlike the conventional techniques, allows the deposition of DLC on three-dimensional workpieces, even without moving the sample, without an intermediate layer, and with high adhesion [6], an important aspect for orthopaedic articulations. In our previous work, DLC coatings were deposited on silicon and Ti-13Nb-13Zr alloy substrates using the plasma immersion process for the characterization of microstructure, mechanical properties and corrosion behaviour [7-9]. Hardness, measured by a nanoindenter, ranged from 16.4-17.6 GPa, the pull test results indicate the good adhesion of DLC coatings to Ti-13Nb-13Zr, and electrochemical assays (polarization test and electrochemical impedance spectroscopy) indicate that DLC coatings produced by plasma immersion can improve the corrosion resistance [9].


Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 454 ◽  
Author(s):  
Arman Dastpak ◽  
Kirsi Yliniemi ◽  
Mariana de Oliveira Monteiro ◽  
Sarah Höhn ◽  
Sannakaisa Virtanen ◽  
...  

In this study, a waste of biorefinery—lignin—is investigated as an anticorrosion coating on stainless steel. Corrosion behavior of two lignin types (hardwood beech and softwood spruce) was studied by electrochemical measurements (linear sweep voltammetry, open circuit potential, potentiostatic polarization, cyclic potentiodynamic polarization, and electrochemical impedance measurements) during exposure to simulated body fluid (SBF) or phosphate buffer (PBS). Results from linear sweep voltammetry of lignin-coated samples, in particular, demonstrated a reduction in corrosion current density between 1 and 3 orders of magnitude cf. blank stainless steel. Furthermore, results from cross cut adhesion tests on lignin-coated samples demonstrated that the best possible adhesion (grade 0) of ISO 2409 standard was achieved for the investigated novel coatings. Such findings suggest that lignin materials could transform the field of organic coatings towards more sustainable alternatives by replacing non-renewable polymer coatings.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1325 ◽  
Author(s):  
Jian-Bao Wang ◽  
Guang-Chun Xiao ◽  
Wei Zhao ◽  
Bing-Rong Zhang ◽  
Wei-Feng Rao

The microstructure and corrosion resistance in H2S environments for various zones of X80 pipeline steel submerged arc welded joints were studied. The main microstructures in the base metal (BM), welded metal (WM), coarse-grained heat-affected zone (CGHAZ), and fine-grained heat-affected zone (FGHAZ) were mainly polygonal ferrite and granular bainite; acicular ferrite with fine grains; granular bainite, ferrite, and martensite/austenite constituents, respectively. The corrosion behavior differences resulted from the microstructure gradients. The results of the micro-morphologies of the corrosion product films and the electrochemical corrosion characteristics in H2S environments, including open circuit potential and electrochemical impedance spectroscopy, showed that the order of corrosion resistance was FGHAZ > BM > WM > CGHAZ.


2018 ◽  
Vol 934 ◽  
pp. 105-110 ◽  
Author(s):  
Ke Jian Li ◽  
Qiang Zheng ◽  
Yue Lin Qin ◽  
Xiao Wei Liu

Plastic deformation can induce surface modification, such as shot peening (SP) on workpiece surface is the hot issue of recent scientific research. SP is the efficient way to improve mechanical behavior of specimens by inducing sever plastic deformation on their surface. Nevertheless, this surface treatment induced complex microstructural evolutions such as grain refinement, will enhance the corrosion resistance of specimens. In this work, the microstructure and properties of 34CrMo4 alloy of before and after SP for 20 min have been investigated. The evolution of microstructure and properties were analyzed from the surface and cross-section. The microstructure morphology at the different depth was determined by optical microscope. The results show grain size is increasing with the depth, and the microhardness and compressive residual stress decrease gradually. In terms of corrosion resistance, the 50 μm depth specimen has the best property than other depth, which the potential and corrosion current density are-0.484 V and-5.72 Acm-2, respectively. The maximum polarization resistance is 2055 Ωcm2by capacitive arc radius of electrochemical impedance spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document