scholarly journals Rheological Properties of Alginate–Essential Oil Nanodispersions

2018 ◽  
Vol 2 (4) ◽  
pp. 48 ◽  
Author(s):  
Martina Cofelice ◽  
Francesca Cuomo ◽  
Francesco Lopez

Due to its favorable structural properties and biocompatibility, alginate is recognized as a suitable versatile biopolymer for use in a broad range of applications ranging from drug delivery, wound healing, tissue engineering, and food formulations such as nanodispersions. Rheological analysis plays a crucial role in the design of suitable nanoemulsion based coatings. Different essential oil and alginate nanodispersion compositions stabilized by Tween 80 were analyzed for rheological and conductometric properties. The results confirmed that the nanoformulations shared a pseudoplastic non-Newtonian behavior that was more evident with higher alginate concentrations (2%). Nanodispersions made of alginate and essential oil exhibited a slight thixotropic behavior, demonstrating the aptitude to instantaneously recover from the applied stress or strain. Oscillatory frequency sweep tests showed a similar fluid-like behavior for 1% and 2% alginate nanodispersions. Finally, it was demonstrated that advantages coming with the use of the essential oil are added to the positive aspects of alginate with no dramatic modification on the flow behavior.

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3486
Author(s):  
Jenifer Santos ◽  
Nuria Calero ◽  
Luis Alfonso Trujillo-Cayado ◽  
María José Martín-Piñero ◽  
José Muñoz

Emulsions can be used as delivery systems for bioactive ingredients for their incorporation in food products. Essential oils are natural compounds found in plants that present antioxidant and antimicrobial activity. Therefore, the main goal of this work was to develop emulsions, containing mandarin essential oil stabilized by two food-grade surfactants and guar gum, and to evaluate their physical stability. The initial droplet size of emulsions developed by microfluidization was optimized, obtaining diameters below one micron regardless of the processing conditions. However, the emulsion processed at 25,000 psi and one pass exhibited the lowest mean droplet sizes and polidispersity, and therefore, a higher stability. Different ratios of Tween 80 and Span 80 were assessed as stabilizers. Results obtained indicated that the ratio of surfactants had a significant effect on the mean droplet sizes, physical stability, and rheological properties. Thus, we found that the optimum ratio of surfactants was 75/25 (Tween80/Span80) on account of the lowest droplet mean diameters, lack of coalescence, and a low creaming rate. The rheological characterization of the stable emulsions showed a shear thinning flow behavior, and G″ (loss modulus) values higher than G′ (storage modulus) values, in all the frequency range. The rheological behavior may be governed by the guar gum, which was confirmed by field emission scanning electron microscopy (FESEM). This research can be considered as the starting point for future applications of mandarin essential oil in emulsions, which can be incorporated in products as food preservatives.


Author(s):  
Kamal Solati ◽  
Mehrdad Karimi ◽  
Mahmoud Rafieian-Kopaei ◽  
Naser Abbasi ◽  
Saber Abbaszadeh ◽  
...  

: Wound healing is a process which starts with inflammatory response after damage occurrence. This process happens by restoring the wound surface coating tissue, migrating fibroblasts to form the needed collagen, forming a healing tissue and finally contortion and extraction of the wound. Today, various drugs are used to heal the wound. However, the used drugs to repair wounds have some defects and side effects. In spite of all attempts to accelerate wound healing definitely, no safe drug has been introduced for this purpose. Therefore, the necessity of identifying herbal plants in ethnopharmacology and ethnobotany documents with healing effect is felt essential. In this article we tried to review and present Iranian effective medicinal plants and herbal compounds used for wound healing. Searching was performed on databases including ISI Web of Science, PubMed, PubMed Central, Scopus, ISC, SID, Magiran and some other databases. The keywords used included wound healing, skin treatment, medicinal plants, ethnobotany, and phytotherapy. In this regard, 139 effective medicinal plants on wound healing were identified based on ethnopharmacology and ethnobotanical sources of Iran. Medicinal plants such as Salvia officinalis, Echium amoenum, Verbascum spp., G1ycyrrhiza glabra, Medicago sativa, Mentha pulegium, Datura stramonium L., Alhagi spp., Aloe vera, Hypericum perforatum, Pistacia atlantica and Prosopis cineraria were the most important and effective medicinal plants on wound healing in Iran. These native Iranian medicinal plants are full of antioxidants and biological compounds and might be used for wound healing and preparation of new drugs.


2020 ◽  
Vol 16 (5) ◽  
pp. 666-674
Author(s):  
Amir M. Mortazavian ◽  
Najme Kheynoor ◽  
Zahra Pilevar ◽  
Zhaleh Sheidaei ◽  
Samira Beikzadeh ◽  
...  

The rheological analysis is important analytical tools used to obtain fundamental information about food structure. For instance, the properties of flow of liquid and semi-solidity are characterized by the consistency and flow behavior experiments as two important rheological parameters. The rheological parameters of foods are applied in quality control of the products and processing of food products such as energy input calculations, process design, equipment selection, and especially for deciding on heat exchangers and pumps. Steady flow behavior, oscillatory, and penetration tests are among commonly used parameters for evaluating rheological characteristics of ice cream. The purpose of this paper is to provide an overview of recent experiments and methods for measuring the rheological and texture properties of ice cream.


2017 ◽  
Vol 92 (4) ◽  
pp. 274-282 ◽  
Author(s):  
I Keskin ◽  
Y Gunal ◽  
S Ayla ◽  
B Kolbasi ◽  
A Sakul ◽  
...  

2021 ◽  
Vol 27 ◽  
pp. 102169
Author(s):  
Guilherme E. de O. Blanco ◽  
Clóvis W.O. de Souza ◽  
Marcela P. Bernardo ◽  
Martin Zenke ◽  
Luiz H.C. Mattoso ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Maíra Lima Gonçalez ◽  
Diana Gleide Marcussi ◽  
Giovana Maria Fioramonti Calixto ◽  
Marcos Antonio Corrêa ◽  
Marlus Chorilli

Multiple emulsions (MEs) are intensively being studied for drug delivery due to their ability to load and increase the bioavailability of active lipophilic antioxidant, such as kojic dipalmitate (KDP). The aim of this study was to structurally characterize developed MEs by determining the average droplet size (Dnm) and zeta potential (ZP), performing macroscopic and microscopic analysis and analyzing their rheological behavior andin vitrobioadhesion. Furthermore, thein vitrosafety profile and antioxidant activity of KDP-loaded MEs were evaluated. The developed MEs showed a Dnm of approximately 1 micrometer and a ZP of −13 mV, and no change was observed in Dnm or ZP of the system with the addition of KDP. KDP-unloaded MEs exhibited ‘‘shear thinning’’ flow behavior whereas KDP-loaded MEs exhibited Newtonian behavior, which are both characteristic of antithixotropic materials. MEs have bioadhesion properties that were not influenced by the incorporation of KDP. The results showed that the incorporation of KDP into MEs improved the safety profile of the drug. Thein vitroantioxidant activity assay suggested that MEs presented a higher capacity for maintaining the antioxidant activity of KDP. ME-based systems may be a promising platform for the topical application of KDP in the treatment of skin disorders.


2021 ◽  
Vol 11 (15) ◽  
pp. 6945
Author(s):  
Chukwuma O. Agubata ◽  
Cynthia C. Mbaoji ◽  
Ifeanyi T. Nzekwe ◽  
César Saldías ◽  
David Díaz Díaz

In this work, a biohydrogel based on alginate and dynamic covalent B-O bonds, and derived composites, has been evaluated for wound healing applications. In particular, a phenylboronic acid–alginate (PBA-Alg) complex was synthesized by coupling 3-aminophenylboronic acid onto alginate, and used to prepare varied concentrations of hydrogels and silicate-based nanocomposites in PBS. The resulting hydrogels were characterized in terms of interfacial tension, moisture uptake and loss, interaction with fresh acid-soluble collagen, self-healing ability, effects on blood clotting and wound healing. The interfacial tension between the hydrogels and biorelevant fluids was low and moisture loss of 55%–60% was evident without uptake from the environment. The components of the hydrogels and their mixtures with collagen were found to be compatible. These hydrogels showed efficient self-healing and thixotropic behavior, and the animals in the treatment groups displayed blood clotting times between 9.1 min and 10.7 min. In contrast, the composites showed much longer or shorter clotting times depending on the silicate content. A significant improvement in wound healing was observed in 3% w/v PBA-Alg formulations. Overall, the PBA-Alg hydrogels exhibit self-healing dynamic covalent interactions and may be useful in dressings for incision wounds.


2018 ◽  
Vol 19 (4) ◽  
Author(s):  
Tadeusz Wolski ◽  
Bogdan Kędzia

A cup plant (Silphium perfoliatum L.) is a poorly-known crop in the country. It came to Europe from North America in the 18th century. It can be propagated by dividing rhizomes or by sowing seeds. This plant is undemanding in terms of alimentary requirements and resistant to cold and pests. Due to the high content of nutrients and the yield of green mass a cup plant is used for fodder purposes. A cup plant contains numerous secondary metabolites, such as phenolic acids, flavonoids, terpenes, essential oil, tannins, vitamins and mineral components. It is characterized by antioxidant, antibacterial, antifungal, cytostatic and immunosuppressive activity. Research on laboratory animals indicates that the cup plant accelerates wound healing and indicate hypolipemic and estrogenic activity. Numerous reports confirm, that this plant also has a strengthening, diuretic, anti-inflammatory, antihemorrhagic and spasmolytic activity. In addition, it is used in the healing diseases of the liver and spleen, and also heals gastric and duodenal ulcers.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qianmin Ou ◽  
Shaohan Zhang ◽  
Chuanqiang Fu ◽  
Le Yu ◽  
Peikun Xin ◽  
...  

Abstract Background During wound healing, the overproduction of reactive oxygen species (ROS) can break the cellular oxidant/antioxidant balance, which prolongs healing. The wound dressings targeting the mitigation of ROS will be of great advantages for the wound healing. puerarin (PUE) and ferulic acid (FA) are natural compounds derived from herbs that exhibit multiple pharmacological activities, such as antioxidant and anti-inflammatory effects. Polydopamine (PDA) is made from natural dopamine and shows excellent antioxidant function. Therefore, the combination of natural antioxidants into hydrogel dressing is a promising therapy for wound healing. Results Hydrogel wound dressings have been developed by incorporating PUE or FA via PDA nanoparticles (NPs) into polyethylene glycol diacrylate (PEG-DA) hydrogel. This hydrogel can load natural antioxidant drugs and retain the drug in the gel network for a long period due to the presence of PDA NPs. Under oxidative stress, this hydrogel can improve the activity of superoxide dismutase and glutathione peroxidase and reduce the levels of ROS and malondialdehyde, thus preventing oxidative damage to cells, and then promoting wound healing, tissue regeneration, and collagen accumulation. Conclusion Overall, this triple antioxidant hydrogel accelerates wound healing by alleviating oxidative injury. Our study thus provides a new way about co-delivery of multiple antioxidant natural molecules from herbs via antioxidant nanoparticles for wound healing and skin regeneration. Graphic Abstract


2018 ◽  
Vol 27 (3) ◽  
pp. 531-537 ◽  
Author(s):  
Mohammad Modarresi ◽  
Mohammad-Reza Farahpour ◽  
Behzad Baradaran

Sign in / Sign up

Export Citation Format

Share Document