scholarly journals Efficient and Flexible Multi-Factor Authentication Protocol Based on Fuzzy Extractor of Administrator’s Fingerprint and Smart Mobile Device

Cryptography ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 24 ◽  
Author(s):  
Mohammed ◽  
Yassin

In an era of tremendous development in information technology and the Internet of Things (IoT), security plays a key role in safety devices connected with the Internet. Authentication is vital in the security field, and to achieve a strong authentication scheme, there are several systems using a Multi-Factor Authentication (MFA) scheme based on a smart card, token, and biometric. However, these schemes have suffered from the extra cost; lost, stolen or broken factor, and malicious attacks. In this paper, we design an MFA protocol to be the authenticated administrator of IoT’s devices. The main components of our protocol are a smart mobile device and the fuzzy extractor of the administrator’s fingerprint. The information of the authenticated user is stored in an anomalous manner in mobile devices and servers to resist well-known attacks, and, as a result, the attacker fails to authenticate the system when they obtain a mobile device or password. Our work overcomes the above-mentioned issues and does not require extra cost for a fingerprint device. By using the AVISPA tool to analysis protocol security, the results are good and safe against known attacks.

Author(s):  
Э.Д. Алисултанова ◽  
Л.К. Хаджиева ◽  
М.З. Исаева

Данная статья посвящена созданию профориентационной (умной) лаборатории, которая призвана сформировать у школьников базовые представления о технологии Интернет вещей (IoT), угрозах кибербезопасности в этой сфере, мотивировать к получению в будущем профильного образования и построению карьеры в области обеспечения безопасности Интернет вещей (IoT) при функционировании умного производства. Обучение школьников в профориентационной лаборатории, построенное на основе применения интерактивных электронных образовательных ресурсов, прежде всего будет позиционировать карьерные возможности будущих специалистов в сфере обеспечения безопасности Интернет вещей (IoT) при функционировании умного производства. В рамках функционирования лаборатории особое внимание обучающихся сконцентрировано на тематиках правовых аспектов обеспечения кибербезопасности, главных тенденциях развития киберугроз в современном глобальном информационном пространстве и мерах, необходимых для их нейтрализации. This article is devoted to the creation of a career-oriented (smart) laboratory, which is designed to formulate in schoolchildren basic ideas about the Internet of Things (IoT) technology, cyber security threats in this area, motivate to receive specialized education in the future and build a career in the field of Internet things (IoT) security) with the functioning of smart manufacturing. The training of schoolchildren in a vocational guidance laboratory, based on the use of interactive electronic educational resources, will primarily position the career opportunities of future specialists in the field of Internet of Things (IoT) security in the operation of smart manufacturing. Within the framework of the functioning of the laboratory, special attention of students is concentrated on the topics of the legal aspects of ensuring cyber security, the main trends in the development of cyber threats in the modern global information space and the measures necessary to neutralize them.


2015 ◽  
pp. 782-807
Author(s):  
Yushi Shen ◽  
Yale Li ◽  
Ling Wu ◽  
Shaofeng Liu ◽  
Qian Wen

Cloud-era Information Technology (IT) contains three main themes: The information hub (cloud), network communications (pipes), and intelligent terminals. In this chapter, the developmental stages of these three main components of cloud computing are discussed, with emphasis on future development. The Internet of things is also examined, which is expected to thrive as a direct result of the development of cloud computing.


Author(s):  
Muawya N. Al Dalaien ◽  
Ameur Bensefia ◽  
Salam A. Hoshang ◽  
Abdul Rahman A. Bathaqili

In recent years the Internet of Things (IoT) has rapidly become a revolutionary technological invention causing significant changes to the way both corporate computing systems, and even household gadgets and appliances, are designed and manufactured. The aim of this chapter is to highlight the security and privacy issues that may affect the evolution of IoT technology. The privacy issues are discussed from customer perspectives: first, the IoT privacy concern where the privacy debates on IoT and the IoT privacy that reflected from users' perspective based on the examination of previous researches results. In addition, the different architectures for IoT are discussed. Finally, the chapter discusses the IoT security concern by collecting, analyzing and presenting the major IoT security concerns in the literature as well as providing some potential solutions to these concerns.


2013 ◽  
Vol 765-767 ◽  
pp. 1726-1729
Author(s):  
Yan Bing Liu ◽  
Wen Jing Ren

Security and privacy is always the most important issues by the public in the Internet of Things. The core problems are associated with the diversifying of the Internet towards an Internet of things, and the different requirements to the security level for application. Therefore, this paper is to put forward an authentication model and protocol to cope with the problem. The protocol is adopted with attribute-based encryption to replace the traditional identity-based encryption (IBE), and then make formalization analysis to the security of the protocol by using BAN logic.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4121 ◽  
Author(s):  
Alberto Giaretta ◽  
Nicola Dragoni ◽  
Fabio Massacci

Cybersecurity is one of the biggest challenges in the Internet of Things (IoT) domain, as well as one of its most embarrassing failures. As a matter of fact, nowadays IoT devices still exhibit various shortcomings. For example, they lack secure default configurations and sufficient security configurability. They also lack rich behavioural descriptions, failing to list provided and required services. To answer this problem, we envision a future where IoT devices carry behavioural contracts and Fog nodes store network policies. One requirement is that contract consistency must be easy to prove. Moreover, contracts must be easy to verify against network policies. In this paper, we propose to combine the security-by-contract (S × C) paradigm with Fog computing to secure IoT devices. Following our previous work, first we formally define the pillars of our proposal. Then, by means of a running case study, we show that we can model communication flows and prevent information leaks. Last, we show that our contribution enables a holistic approach to IoT security, and that it can also prevent unexpected chains of events.


IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 11909-11926 ◽  
Author(s):  
Christopher Huth ◽  
Daniela Becker ◽  
Jorge Guajardo Merchan ◽  
Paul Duplys ◽  
Tim Guneysu

2020 ◽  
Vol 17 (9) ◽  
pp. 4207-4212
Author(s):  
Padala Neeraja ◽  
Durgesh Nandan

The internet of things is nothing but the interconnection of a number of systems or objects in which the internal circuit consists of a number of sensors and connectors. The main aim of the internet of things is to transfer information and to make an interaction between the systems. Through IoT, all the systems can be sensed and all the home appliances will be controlled remotely through a mobile device. It creates an integration of more and more networks in the future. The IoT is a very important emerging technology nowadays in which the main applications of IoT are smart grids, smart homes, etc. As the number of devices was increasing nowadays IoT plays a very significant role in present society. So, the challenges were increasing and there will be a machine to machine communication and also with the user. It reduces human efforts as it is machine-dependent. It acts according to the instructions given by the user.


Author(s):  
Yusuf Perwej ◽  
Firoj Parwej ◽  
Mumdouh Mirghani Mohamed Hassan ◽  
Nikhat Akhtar

Recent years have seen the swift development and deployment of Internet-of-Things (IoT) applications in a variety of application domains. In this scenario, people worldwide are now ready to delight the benefits of the Internet of Things (IoT). The IoT is emerging as the third wave in the evolution of the Internet. The 1990s’ Internet wave connected 1.2 billion subscribers while the 2000s’ mobile wave connected another 2.4 billion. Actually, IoT is expected to consist of more than 84 billion connected devices generating 186 zettabyte of data by 2025, in the opinion of IDC. It includes major types of networks, such as distributed, ubiquitous, grid, and vehicular, these have conquered the world of information technology over a decade. IoT is growing fast across several industry verticals along with increases in the number of interconnected devices and diversify of IoT applications. In spite of the fact that, IoT technologies are not reaching maturity yet and there are many challenges to overcome. The Internet of Things combines actual and virtual anywhere and anytime, fascinate the attention of both constructor and hacker. Necessarily, leaving the devices without human interference for a long period could lead to theft and IoT incorporates many such things. In this paper, we are briefly discussing technological perspective of Internet of Things security. Because, the protection was a major concern when just two devices were coupled. In this context, security is the most significant of them. Today scenario, there are millions of connected devices and billions of sensors and their numbers are growing. All of them are expected secure and reliable connectivity. Consequently, companies and organizations adopting IoT technologies require well-designed security IoT architectures.


2019 ◽  
Vol 8 (3) ◽  
pp. 2613-2619

The Internet of Things (IoT) technology is the main contributor in numerous smart applications. The reason is because it offers for 24/7 hours of control and maintenance geographically apart, thus reduces labor or manpower cost significantly. The 3 main components for any IoT applications are the source of power (energy), the microcontroller and the sensor (s) involved. Previous issues mainly related to how long the source of power could last for the applications to continue its operation. This paper presents IoT technology for hygiene application to address the utilization of toilet tissue named as Intelligent Tissue Dispenser System (iTDS). The iTDS device relies on the microcontroller and sensor in order to operate the intended task. The microcontroller used is an IoT based device called ESP8266 which is a WiFi-embedded microcontroller that utilized standard everyday WiFi band frequency which is at 2.4 GHz. For the sensor, an ultrasonic distance measurement device is used. The ultrasonic sensor transmit an ultrasonic wave that hit the object to be measured. Upon hitting the surface of the object to be measured, the wave is then reflected to the receiver of the sensor and the time difference between transmitted wave and received wave is calculated to get the actual distance of the object from the sensor. The main contribution of iTDS is to monitor and track for the toilet tissue to be refilled. The implementation shows the iTDS ables to update for the status of each tissue which reducing the cost of manually human checking for tissue refill.


Sign in / Sign up

Export Citation Format

Share Document