scholarly journals Change in Interface Characteristics of ITO Modified with n-decyltrimethoxysilane

Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 645
Author(s):  
Myung-Gyun Baek ◽  
Johng-Eon Shin ◽  
Dong-Hyun Hwang ◽  
Sung-Hoon Kim ◽  
Hong-Gyu Park ◽  
...  

Herein, we examined changes in the interfacial properties of organic light-emitting diodes when n-decyltrimethoxysilane (CH3SAM) was deposited on the surface of an indium tin oxide (ITO) electrode for various deposition times. It was revealed that the interfacial properties varied with deposition time. As the latter increased, so did the measured value of the contact angle, and ITO substrate exhibited a lower wettability. The contact angle measurements for bare ITO at 1, 10, 30, and 90 min were 57.41°, 63.43°, 73.76°, 81.47°, respectively, and the highest value obtained was 93.34°. In addition, the average roughness and work function of the ITO were measured using atomic force microscopy and X-ray photoelectron spectroscopy. As the deposition time of CH3SAM on the ITO substrates increased, it was evident that the former was well aligned with the latter, improving surface modification. The work function of CH3SAM, modified on the ITO substrates, improved by approximately 0.11 eV from 5.05–5.16 eV. The introduction of CH3SAM to the ITO revealed the ease of adjustment of the characteristics of ITO substrates.

2005 ◽  
Vol 284-286 ◽  
pp. 497-500 ◽  
Author(s):  
Jennifer Vandiver ◽  
Nelesh Patel ◽  
William Bonfield ◽  
Christine Ortiz

Dense, polycrystalline, synthetic hydroxyapatite (HA) was incubated for 36 days in modified simulated body fluid (SBF) with increased HCO3 - and reduced Cl- ion concentrations (27 and 120 mM, respectively) closer to actual blood plasma than typical SBF. The resulting precipitated apatite layer was characterized by X-ray photoelectron spectroscopy (XPS) and contact angle measurements and found to be nonstoichiometric, calcium deficient (Ca/P~1.06), non-carbonate containing, and of intermediate hydrophilicity (advancing contact angle, qa=76.5±1.3°). The nanoscale surface topography of the SBF-incubated HA sample was imaged by tapping mode atomic force microscopy (TMAFM), observed to be ≤100 nm in thickness, and composed of three distinct morphologies. These topographically distinct regions were localized within individual grains and facets of the initial HA surface and included: hemispherical, globular structures (maximum lateral dimension, d=44.7±12.7 nm, peak-tovalley height, h=3.6±2.7 nm); elongated, needle-like structures (minimum lateral dimension, w=31.0±8.5 nm, d=104.4±31.1 nm, h=5.0±3.2 nm), and regions of larger, irregularly shaped structures that were relatively smooth (d=504.9±219.1 nm, h=104.0±51.7 nm).


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Myung-Gyun Baek ◽  
Johng-Eon Shin ◽  
Sang-Geon Park

Herein, we confirm the performance difference according to the structure of self-assembling monolayer (SAM) and investigate the characteristics of the indium tin oxide (ITO) surface when ITO substrates are deposited by (3,3,3-trifluoropropyl)trimethoxysilane (F-3SAM) and (heptadecafluoro-1,1,2,2-tetrahydrodecyl)triethoxysilane (F-10SAM) having different chain lengths with trifluoromethyl group as terminal functional group, as well as SAM benzoic acid (BA) and 2-naphthoic acid (NA) with benzene ring forms. Through these, it is possible to control the wetting properties, surface roughness, and work function of the ITO surface. Wetting characteristics, average roughness, and changes in work function of the ITO surface were characterized by contact angle measurement, atomic force microscopy (AFM), and UV photoelectron spectroscopy (UPS). The measured contact angles were 41.1°, 82.25°, and 118° for the bare ITO, NA, and F-10SAM, respectively, the average roughnesses of the SAM-modified surfaces were 1.377, 1.033, and 0.838 nm for the bare ITO, NA, and F-10SAM, respectively. The work function of the ITO surface modified with NA and F-10SAM increased from 0.21 and 0.36 eV to 5.01 and 5.16 eV, respectively. As a result, the surface properties of ITO were better for aliphatic SAM than for aromatic ring SAM.


2015 ◽  
Vol 654 ◽  
pp. 218-223 ◽  
Author(s):  
Alexander Heinemann ◽  
Sven Koenen ◽  
Kerstin Schwabe ◽  
Christoph Rehbock ◽  
Stephan Barcikowski

Electrophoretic deposition of ligand-free platinum nanoparticles has been studied to elucidate how wettability, indicated by contact angle measurements, is linked to vital parameters of the electrophoretic deposition process. These parameters, namely the colloid concentration, electric field strength and deposition time, have been systematically varied in order to determine their influence on the contact angle. Additionally, scanning electron microscopy has been used to confirm the homogeneity of the achieved coatings.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3171
Author(s):  
AbdolAli Moghaddasi ◽  
Patrik Sobolčiak ◽  
Anton Popelka ◽  
Igor Krupa

Purpose: Copolyamide 6,10 (coPA) electrospun mats were covered with multilayered (ML) and single-layered (SL) MXene (Ti3C2Tx) as a membrane for the separation of water/vegetable oil emulsions. Methods: Prepared membranes were characterized by atomic force microscopy (AFM), profilometry, the contact angle measurements of various liquids in air, and the underwater contact angle of vegetable oil. The separation efficiency was evaluated by measuring the UV transmittance of stock solutions compared to the UV transmittance of the filtrate. Results: The MXene coating onto coPA mats led to changes in the permeability, hydrophilicity, and roughness of the membranes and enhanced the separation efficiency of the water/vegetable oil emulsions containing 10, 100, and 1000 ppm of sunflower vegetable oil. It was found that membranes were highly oleophobic (>124°) under water, unlike in air, where the membranes showed high oleophobicity (<5°). The separation efficiency of water/oil emulsions for both types of covered membranes reached over 99%, with a surface coverage of 3.2 mg/cm2 Ti3C2Tx (for ML-Ti3C2Tx) and 2.9 mg/cm2 (for SL-Ti3C2Tx). Conclusions: The separation efficiency was greater than 98% for membranes covered with 2.65 mg/cm2 of ML-Ti3C2Tx, whereas the separation efficiency for membranes containing 1.89 and 0.77 mg/cm2 was less than 90% for all studied emulsion concentrations.


2020 ◽  
Vol 32 (7) ◽  
pp. 761-774
Author(s):  
Lopamudra Das ◽  
John C Poutsma ◽  
Michael J Kelley

Polyimides (PIs) have a wide range of industrial and scientific applications due to their excellent thermal and mechanical stability and chemical resistance. Their response to ultraviolet (UV) irradiation is of further interest in high-value applications such as spacecraft technology and electronics packaging. In this work, we investigated the effect of 172-nm UV xenon excimer lamp irradiation on samples of pyromellitimido-oxydianiline (PMDA-ODA) commercial films in the absence of oxygen. The average irradiance received at the sample position was 90 mW/cm2, and the total radiation dosage varied from 0 to 64 J/cm2. X-Ray photoelectron spectroscopy, time-of-flight-secondary ion mass spectrometry, atomic force microscopy, and contact angle measurements were used to characterize the effect. Calculated UV-visible spectroscopy absorption spectra were obtained using the ZINDO//B3LYP/3-21G method to give an indication of which orbitals are involved in the transitions near 172 nm. The reactivity of the different UV-treated PI samples toward nitrogen-borne heptafluorodecene vapor was then investigated using the above techniques. Grafting reactions occurred on the surface of the photochemically activated polymer. This study explored the potential for modification of PI surfaces using UV-light-assisted grafting to impart valuable functionalities.


Sign in / Sign up

Export Citation Format

Share Document