scholarly journals Crystallization Behavior in Bi2O3-B2O3-ZnO Glass Braze and Its Application for Joining Ferrite Ceramics at a Relatively Low Temperature

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1007
Author(s):  
Wei Guo ◽  
Li Fu ◽  
Peng He

50Bi2O3-30B2O3-20ZnO (mol.%) glass was designed and prepared in our previous work. On the basis of preliminary work on DSC analysis, the crystallization behavior of the glass was further investigated in the present work. The results showed that Bi38ZnO58 and Bi45BO69 crystals were formed in the glass during the heating process. Subsequently, ferrite ceramics were then brazed at one of the peak temperatures, 551 °C. The results showed that Bi38ZnO58 and Bi45BO69 crystals were formed in the joint domain, and the joint possessed a shear strength value of 76.6 MPa.

2013 ◽  
Vol 58 (2) ◽  
pp. 529-533 ◽  
Author(s):  
R. Koleňák ◽  
M. Martinkovič ◽  
M. Koleňáková

The work is devoted to the study of shear strength of soldered joints fabricated by use of high-temperature solders of types Bi-11Ag, Au-20Sn, Sn-5Sb, Zn-4Al, Pb-5Sn, and Pb-10Sn. The shear strength was determined on metallic substrates made of Cu, Ni, and Ag. The strength of joints fabricated by use of flux and that of joints fabricated by use of ultrasonic activation without flux was compared. The obtained results have shown that in case of soldering by use of ultrasound (UT), higher shear strength of soldered joints was achieved with most solders. The highest shear strength by use of UT was achieved with an Au-20Sn joint fabricated on copper, namely up to 195 MPa. The lowest average values were achieved with Pb-based solders (Pb-5Sn and Pb-10Sn). The shear strength values of these solders used on Cu substrate varied from 24 to 27 MPa. DSC analysis was performed to determine the melting interval of lead-free solders.


Alloy Digest ◽  
1966 ◽  
Vol 15 (11) ◽  

Abstract AMPCOLOY 495 is a high manganese type of aluminum bronze recommended where high strength and corrosion resistance are required along with good weldability. It is recommended for marine equipment and ship propellers. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fracture toughness, creep, and fatigue. It also includes information on low temperature performance and corrosion resistance as well as casting, forming, heat treating, machining, and joining. Filing Code: Cu-171. Producer or source: Ampco Metal Inc..


Alloy Digest ◽  
1972 ◽  
Vol 21 (6) ◽  

Abstract AWHF STEEL is a high-formability steel produced regularly at minimum yield strengths of 45,000 and 50,000 psi and for special applications at 55,000 and 60,000 psi. It is recommended for difficult cold-forming applications that involve bending or drawing and it has good weldability. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and compressive and shear strength as well as fracture toughness and fatigue. It also includes information on low temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SA-275. Producer or source: Alan Wood Steel Company.


2016 ◽  
Vol 63 ◽  
pp. 01030
Author(s):  
Pei Ling Zhou ◽  
Ying Hua Zhang ◽  
Xu Jie Shen ◽  
Zhi An Huang ◽  
Yu Kun Gao

2014 ◽  
Vol 2014 (HITEC) ◽  
pp. 000172-000177
Author(s):  
Koji Sasaki ◽  
Noritsuka Mizumura

Traditional thick film technology is widely used in various electronics products. There are two type of paste based on thick film technology. Typically, over 400°C is required for high temperature sintering type which contains glass for adhesion function. It shows high electrical and thermal performance. On the other hand, 150–300°C range process is used for low temperature process type as silver epoxy. In last decade, nano silver technology shows amazing progress to address low temperature operation by low temperature sintering. This paper will discuss the results on fundamental study of newly developed nano silver pastes with unique approach which uses MO (Metallo-organic) technology and resin reinforcing technology. Nano silver pastes contain several types of dispersant as surface coating to prevent agglomeration of the particles. Various coating technique has been reported to optimize sintering performance and stability. MO technology provides low temperature sintering capability by minimizing the coating material. The nano silver pastes show high electrical and thermal performance. However, degradation of die shear strength has been found by thermal cycling test due to the fragility of porous sintered structure. To improve the mechanical property, resin reinforcing technology has been developed. By adding special resin to the pastes, the porous area is filled with the resin and the sintered structure is reinforced. Degradation of die shear strength was not found by thermal cycling test to 1000 cycles. Nano silver pastes using MO technology and resin reinforcing technology will meet lots of requirement on various thick film applications.


2014 ◽  
Vol 11 (1) ◽  
pp. 7-15
Author(s):  
Hannes Greve ◽  
F. Patrick McCluskey

Low temperature transient liquid phase sintering (LT-TLPS) can be used to form high-temperature joints between metallic interfaces at low process temperatures. In this paper, process analyses and shear strength studies of paste-based approaches to LT-TLPS are presented. The process progression studies include DSC analyses and observations of intermetallic compound (IMC) formation by cross-sectioning. It was found that the sintering process reaches completion after sintering times of 15 min for process temperatures approximately 50°C above the melting point of the low temperature constituent. For the shear studies, test samples consisting of copper dice and copper substrates joined by sintering with a variety of sinter pastes with different ratios of copper and tin have been assessed. A fixture was designed for high temperature enabled shear tests at 25°C, 125°C, 250°C, 400°C, and 600°C. The influence of the ratio of the amount of high melting-point constituent to the amount of low melting-point constituent on the maximum application temperature of the sinter paste was analyzed. Ag20Sn and Cu50Sn pastes showed no reduction in shear strength up to 400°C, and Cu40Sn pastes showed high shear strengths up to 600°C. It was shown that LT-TLPS can be used to form high temperature stable joints at low temperatures without the need to apply pressure during processing.


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 791 ◽  
Author(s):  
Kaipeng Wang ◽  
Fengjiang Wang ◽  
Ying Huang ◽  
Kai Qi

Sn-58Bi eutectic solder is the most recommended low temperature Pb-free solder but is also limited from the interfacial embrittlement of Bi segregation. Since the quaternary Sn-38Bi-1.5Sb-0.7Ag solder provides a similar melting point as Sn-58Bi eutectic, this paper systematically investigated the properties of this solder from wettability, bulk tensile properties, interfacial microstructure in solder joints with a Cu substrate, interfacial evolution in joints during isothermal aging and the shear strength on ball solder joints with effect of aging conditions. The results were also compared with Sn-58Bi solder. The wettability of solder alloys was evaluated with wetting balance testing, and the quaternary Sn-38Bi-1.5Sb-0.7Ag solder had a better wettability than Sn-58Bi solder on the wetting time. Tensile tests on bulk solder alloys indicated that the quaternary Sn-38Bi-1.5Sb-0.7Ag solder had a higher tensile strength and similar elongation compared with Sn-58Bi solder due to the finely distributed SnSb and Ag3Sn intermetallics in the solder matrix. The tensile strength of solder decreased with a decrease in the strain rate and with an increase in temperature, while the elongation of solder was independent of the temperature and strain rate. When soldering with a Cu substrate, a thin Cu6Sn5 intermetallic compound (IMC) is produced at the interface in the solder joint. Measurement on IMC thickness showed that the quaternary Sn-38Bi-1.5Sb-0.7Ag had a lower IMC growth rate during the following isothermal aging. Ball shear test on solder joints illustrated that the quaternary Sn-38Bi-1.5Sb-0.7Ag solder joints had higher shear strength than Sn-58Bi solder joints. Compared with the serious deterioration on shear strength of Sn-58Bi joints from isothermal aging, the quaternary Sn-38Bi-1.5Sb-0.7Ag solder joints presented a superior high temperature stability. Therefore, the quaternary Sn-38Bi-1.5Sb-0.7Ag solder provides better performances and the possibility to replace Sn-58Bi solder to realize low temperature soldering.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3281
Author(s):  
Yeongjun Seo ◽  
Tomoyo Goto ◽  
Sunghun Cho ◽  
Tohru Sekino

Bioactive glasses are promising materials for various applications, such as bone grafts and implants. The development of sintering techniques for bioactive glasses is one of the most important ways to expand the application to biomaterials. In this paper, we demonstrate the low-temperature mineralization sintering process (LMSP) of glass nanoparticles and their crystallization behavior. LMSP is a novel process employed to densify glass nanoparticles at an extremely low temperature of 120 °C. For this new approach, the hydrothermal condition, mineralization, and the nanosize effect are integrated into LMSP. To induce mineralization in LMSP, bioactive glass nanoparticles (BGNPs, 55SiO2-40CaO-5P2O5, mol%), prepared by the sol-gel process, were mixed with a small amount of simulated body fluid (SBF) solution. As a result, 93% dense BGNPs were realized under a temperature of 120 °C and a uniaxial pressure of 300 MPa. Due to the effect of mineralization, crystalline hydroxyapatite (HAp) was clearly formed at the boundaries of BGNPs, filling particles and interstitials. As a result, the relative density was remarkably close to that of the BGNPs conventionally sintered at 1050 °C. Additionally, the Vickers hardness value of LMSP samples varied from 2.10 ± 0.12 GPa to 4.28 ± 0.11 GPa, and was higher than that of the BGNPs conventionally sintered at 850 °C (2.02 ± 0.11 GPa). These results suggest that, in addition to LMSP being an efficient densification method for obtaining bulk bioactive glasses at a significantly lower temperature level, this process has great potential for tissue engineering applications, such as scaffolds and implants.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Li Liu ◽  
You Huang ◽  
Zhaohui Liu

Asphalt pavement subjected to heavy traffic load and harsh environmental conditions can easily build up damage and shorten the service life. In this paper, different dosages of basalt fiber (BF) were introduced into crumb rubber (CR) modified asphalt binder, and a series of laboratory tests were carried out to evaluate the properties and performances. A dynamic shear rheometer (DSR) was employed to evaluate viscosity and rheological properties. Bending beam rheometer (BBR) test and direct tensile test (DTT) were conducted to test the low temperature property. Cone penetration was designed to test shear strength. Results show that the optimum content of BF is 0.3% by the weight of asphalt binder based on the overall performance evaluation. Viscosity, complex modulus, fatigue property, rutting resistance, and shear strength are improved by introducing BF into asphalt binder. Stiffness and elasticity are also increased. BBR indicates that ductility at low temperature is reduced a little by the presence of BF, but DTT shows that both tensile strength and elongation are improved by BF. Considering that DTT is more performance related, DTT is preferred over BBR to evaluate cracking potentials at low temperatures of asphalt binder modified with CR and BF. Finally, it is revealed through microscale scanning that three mechanisms, absorption of asphalt binder, 3-dimensional fiber network, and bridging effects, contribute to the performance improvement of asphalt binder modified with CR and BF.


Sign in / Sign up

Export Citation Format

Share Document