scholarly journals Green Synthesis and Characterization of a ZnO-ZrO2 Heterojunction for Environmental and Biological Applications

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1502
Author(s):  
Sirajul Haq ◽  
Humma Afsar ◽  
Manel Ben Ali ◽  
Mohammed Almalki ◽  
Bander Albogami ◽  
...  

The zinc oxide–zirconium dioxide (ZnO-ZrO2) heterojunction was prepared by a green method using rubber leaves as reducing and capping agents. Various physicochemical techniques were used to study the chemical composition and the structural and optical properties of the synthesized nanocomposite. The nature of the heterojunction was confirmed through X-ray diffraction and the average sizes of ZnO and ZrO2 crystallites were found to be 70 and 24 nm, respectively. The photocatalytic potential of the ZnO-ZrO2 heterojunction was examined against rhodamine 6G (Rh-6G), and 97.30 percent of the dye was degraded due to the synergistic effect of the light and the catalyst. The commercial ZnO nanopowder was used as a reference catalyst and 86.32 percent degradation was noted under the same reaction conditions. The in vitro antioxidant activity was also performed to scavenge the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radicals, where the activity of the ZnO-ZrO2 heterojunction was found to be higher than the ascorbic acid.

2015 ◽  
Vol 775 ◽  
pp. 143-146
Author(s):  
Ming Kwen Tsai ◽  
Yueh Chien Lee ◽  
Chia Chih Huang ◽  
Sheng Yao Hu ◽  
Kwong Kau Tiong ◽  
...  

In this work, the CuInS2 nanoparticles are successfully synthesized by microwave-assisted heating technique and further calcined at 400 °C. The morphological, structural, and optical properties of the synthesized CuInS2 nanoparticles are investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), Raman scattering, and transmittance measurement, respectively. The SEM image shows the clear particle shape of the calcined CuInS2 nanoparticles. After calcination treatment, the fundamental (112) peak of the XRD spectrum and a broad Raman peak mixed with chalcopyrite and CuAu structures support the improved crystallinity of the calcined CuInS2 nanoparticles.


1999 ◽  
Vol 4 (S1) ◽  
pp. 429-434 ◽  
Author(s):  
C. H. Wei ◽  
Z. Y. Xie ◽  
J. H. Edgar ◽  
K. C. Zeng ◽  
J. Y. Lin ◽  
...  

Boron was incorporated into GaN in order to determine its limits of solubility, its ability of reducing the lattice constant mismatch with 6H-SiC, as well as its effects on the structural and optical properties of GaN epilayers. BxGa1−xN films were deposited on 6H-SiC (0001) substrates at 950 °C by low pressure MOVPE using diborane, trimethylgallium, and ammonia as precursors. A single phase alloy with x=0.015 was successfully produced at a gas reactant B/Ga ratio of 0.005. Phase separation into pure GaN and BxGa1−xN alloy with x=0.30 was deposited for a B/Ga reactant ratio of 0.01. This is the highest B fraction of the wurtzite structure alloy ever reported. For B/Ga ratio ≥ 0.02, no BxGa1−xN was formed, and the solid solution contained two phases: wurtzite GaN and BN based on the results of Auger and x-ray diffraction. The band edge emission of BxGa1−xN varied from 3.451 eV for x=0 with FWHM of 39.2 meV to 3.465 eV for x=0.015 with FWHM of 35.1 meV. The narrower FWHM indicated that the quality of GaN epilayer was improved with small amount of boron incorporation.


1998 ◽  
Vol 537 ◽  
Author(s):  
C. H. Wei ◽  
Z. Y. Xie ◽  
J. H. Edgar ◽  
K. C. Zeng ◽  
J. Y. Lin ◽  
...  

AbstractBoron was incorporated into GaN in order to determine its limits of solubility, its ability of reducing the lattice constant mismatch with 6H-SiC, as well as its effects on the structural and optical properties of GaN epilayers. BxGal-xN films were deposited on 6H-SiC (0001) substrates at 950 °C by low pressure MOVPE using diborane, trimethylgallium, and ammonia as precursors. A single phase alloy with x=0.015 was successfully produced at a gas reactant B/Ga ratio of 0.005. Phase separation into pure GaN and BxGal-xN alloy with x=0.30 was deposited for a B/Ga reactant ratio of 0.01. This is the highest B fraction of the wurtzite structure alloy ever reported. For B/Ga ratio ≥ 0.02, no BxGal-xN was formed, and the solid solution contained two phases: wurtzite GaN and BN based on the results of Auger and x-ray diffraction. The band edge emission of BxGal-xN varied from 3.451 eV for x=0 with FWHM of 39.2 meV to 3.465 eV for x=0.015 with FWHM of 35.1 meV. The narrower FWHM indicated that the quality of GaN epilayer was improved with small amount of boron incorporation.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Gowri Manohari N ◽  
Mohanapriya N

In this present study, Iron Oxide nano particles were synthesized by using Green method. For this synthesis on Iron oxide, the leaf extract of piper betle was used as a reducing agent and FeCl3 as a precursor. Thus, they were characterized by XRD, SEM,EDX and FTIR. The parity of Fe2O3 nano particles was confirmed by EDX. The crystalline size of Iron Oxide nano particles was analyzed using X-ray Diffraction (XRD) spectrum. The functional groups are identified in Fourier Transform Infrared Spectroscopy (FTIR). The surface morphology of the Iron Oxide Nano particles is found from Scanning Electron Microscopy (SEM). The optical properties are determined by using UV-Visible Spectroscopy. Thus, the so-formed nano particles were Fe2O3.


2019 ◽  
Vol 9 (3) ◽  
pp. 217-228
Author(s):  
Vipin Kumar Sharma ◽  
Bhaskar Mazumder ◽  
Vinod Nautiyal ◽  
Prince Prashant Sharma ◽  
Yusra Ahmed

Background: The polymeric hydrocolloids of natural origin such as gums and mucilages have their own significance in food and pharmaceutical industries due to safety, cost, biodegradability, biocompatibility, etc. Objective: This study includes the assessment of feasibility of gummy exudates of Cochlospermum religiosum for development of microspheres through emulsification technique. Methods: The effects of exudates concentration, glutaraldehyde amount and process temperature were analyzed on particle-size and swelling dynamics of developed microspheres. The formulations were also characterized by thermal decomposition and powder X-ray diffraction technique to assess the effect of crosslinking. Results: The photomicrographs of preparations revealed the formation of microspheres with smooth, spherical and free-flowing nature. The swelling dynamics followed Fick’s diffusion mechanism for swelling media. Fourier transform infrared spectroscopy showed the formation of ether-linkage after crosslinking of exudates by glutaraldehyde. The thermogravimetric curves disclosed the formation of strong bonds during crosslinking. Conclusion: The ease of gummy exudates of Cochlospermum religiosum for microspheres formation ascribed the potential of these formulations to incorporate therapeutic agent(s) to be applied as novel drug-carriers.


2011 ◽  
Vol 23 (02) ◽  
pp. 135-140
Author(s):  
Mei-Ju Hou ◽  
Chi-Jen Shih

The main objective of this study is to characterize the in vitro osteo inductive behavior of pearl nano crystallites. The results obtained from X-ray diffraction, Fourier transform infrared (FTIR) spectra, and inductively coupled plasma mass (ICP-MS) analysis demonstrate that the pearls can induce the formation of a hydroxyl apatite (HA) layer on their surface in simulated body fluid (SBF), even after only short soaking periods. Further, MC3T3-E1 cells can easily attach and spread on the pearl powders after 1 h of cultivation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hajar Q. Alijani ◽  
Siavash Iravani ◽  
Shahram Pourseyedi ◽  
Masoud Torkzadeh-Mahani ◽  
Mahmood Barani ◽  
...  

AbstractGreener methods for the synthesis of various nanostructures with well-organized characteristics and biomedical applicability have demonstrated several advantages, including simplicity, low toxicity, cost-effectiveness, and eco-friendliness. Spinel nickel ferrite (NiFe2O4) nanowhiskers with rod-like structures were synthesized using a simple and green method; these nanostructures were evaluated by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, and X-ray energy diffraction spectroscopy. Additionally, the prepared nanowhiskers could significantly reduce the survival of Leishmania major promastigotes, at a concentration of 500 μg/mL; the survival of promastigotes was reduced to ≃ 26%. According to the results obtained from MTT test (in vitro), it can be proposed that further studies should be conducted to evaluate anti-leishmaniasis activity of these types of nanowhiskers in animal models.


2013 ◽  
Vol 750-752 ◽  
pp. 340-343 ◽  
Author(s):  
De Hui Sun ◽  
Jiao Wu ◽  
Ji Lin Zhang

We synthesized Fe3O4 nanoparticles using a solvent thermal method and characterized the morphologies, structures, surface properties, thermal stability and magnetism of the products by Field emission scanning electron microscopy (FE-SEM), Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA) and vibrating sample magnetometer (VSM). The experimental results showed that the Fe3O4 nanoparticles have a tunable average size range from 55 nm to 85 nm. Their diameters decreased with increase of precursor FeCl24H2O concentration or increase of the reaction time under other reaction conditions held constant. The XRD pattern confirmed that the Fe3O4 nanoparticles belong to cubic structure. Magnetic investigation reveals that the Fe3O4 nanoparticles have higher saturation magnetization and negligible coercivity at room temperature.


1996 ◽  
Vol 423 ◽  
Author(s):  
K. H. Shim ◽  
J. M. Myoung ◽  
O. V. Gluschenkov ◽  
C. Kim ◽  
K. Kim ◽  
...  

AbstractAlGaN/GaN heterostructures with multiple quantum wells were grown by plasmaassisted molecular beam epitaxy (PAMBE). Structural and optical properties of the heterostructures were analyzed using x-ray diffraction, cathodoldminescence, and photoluminescence. Interband transitions were clearly observed in the GaN quantum wells at both room- and liquid-helium temperatures. The efficiency of the interband recombination due to the confinement effect was greatly enhanced in the thinner quantum wells. The functional dependence of the interband peaks on the well thickness is shown to be in good agreement with the calculated positions of the quantized levels in the wells.


Author(s):  
Mojtaba Ansari ◽  
Farzad Malmir ◽  
Amir Salati

The ceramics in the system CaO–MgO–SiO2 has recently attracted a great deal of attention because they display a good in vitro bioactivity and have potential use as bone implants. Biphasic calcium-magnesium-silicate ceramics were prepared by a sol-gel method. The dried gel with chemical composition 3CaO.MgO.2SiO2 was thermally treated at 1200 °C for 2 hrs. The structural behavior of the synthesized ceramics was examined by means of X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Merwinite crystalline phase and akermanite phase were recognized. Then, porous akermanite/merwinite scaffolds were prepared to utilize polymer sponge method and evaluated by employing SEM. Furthermore, bone marrow stromal cells (BMSC) adhesion and proliferation on the scaffolds were evaluated by MTT assay test. Differentiation of the cells was assessed by measuring alkaline phosphatase (ALP) activity. The results demonstrated that BMSC adhered and spread well on akermanite scaffolds and proliferated with the increase in the culture time, and the differentiation rate of osteoblasts on scaffolds was comparable to that on blank culture plate control. Thus, the obtained results presented that the akermanite/merwinite scaffolds deserve attention for bone tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document