scholarly journals The NCAR Airborne 94-GHz Cloud Radar: Calibration and Data Processing

Data ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 66
Author(s):  
Ulrike Romatschke ◽  
Michael Dixon ◽  
Peisang Tsai ◽  
Eric Loew ◽  
Jothiram Vivekanandan ◽  
...  

The 94-GHz airborne HIAPER Cloud Radar (HCR) has been deployed in three major field campaigns, sampling clouds over the Pacific between California and Hawaii (2015), over the cold waters of the Southern Ocean (2018), and characterizing tropical convection in the Western Caribbean and Pacific waters off Panama and Costa Rica (2019). An extensive set of quality assurance and quality control procedures were developed and applied to all collected data. Engineering measurements yielded calibration characteristics for the antenna, reflector, and radome, which were applied during flight, to produce the radar moments in real-time. Temperature changes in the instrument during flight affect the receiver gains, leading to some bias. Post project, we estimate the temperature-induced gain errors and apply gain corrections to improve the quality of the data. The reflectivity calibration is monitored by comparing sea surface cross-section measurements against theoretically calculated model values. These comparisons indicate that the HCR is calibrated to within 1–2 dB of the theory. A radar echo classification algorithm was developed to identify “cloud echo” and distinguish it from artifacts. Model reanalysis data and digital terrain elevation data were interpolated to the time-range grid of the radar data, to provide an environmental reference.


2019 ◽  
Vol 12 (6) ◽  
pp. 3151-3171 ◽  
Author(s):  
Maximilian Maahn ◽  
Fabian Hoffmann ◽  
Matthew D. Shupe ◽  
Gijs de Boer ◽  
Sergey Y. Matrosov ◽  
...  

Abstract. Cloud radars are unique instruments for observing cloud processes, but uncertainties in radar calibration have frequently limited data quality. Thus far, no single robust method exists for assessing the calibration of past cloud radar data sets. Here, we investigate whether observations of microphysical processes in liquid clouds such as the transition of cloud droplets to drizzle drops can be used to calibrate cloud radars. Specifically, we study the relationships between the radar reflectivity factor and three variables not affected by absolute radar calibration: the skewness of the radar Doppler spectrum (γ), the radar mean Doppler velocity (W), and the liquid water path (LWP). For each relation, we evaluate the potential for radar calibration. For γ and W, we use box model simulations to determine typical radar reflectivity values for reference points. We apply the new methods to observations at the Atmospheric Radiation Measurement (ARM) sites North Slope of Alaska (NSA) and Oliktok Point (OLI) in 2016 using two 35 GHz Ka-band ARM Zenith Radars (KAZR). For periods with a sufficient number of liquid cloud observations, we find that liquid cloud processes are robust enough for cloud radar calibration, with the LWP-based method performing best. We estimate that, in 2016, the radar reflectivity at NSA was about 1±1 dB too low but stable. For OLI, we identify serious problems with maintaining an accurate calibration including a sudden decrease of 5 to 7 dB in June 2016.



2019 ◽  
Author(s):  
Maximilian Maahn ◽  
Fabian Hoffmann ◽  
Matthew D. Shupe ◽  
Gijs de Boer ◽  
Sergey Y. Matrosov ◽  
...  

Abstract. Cloud radars are unique instruments for observing cloud processes, but uncertainties in radar calibration have frequently limited data quality. Thus far, no single, robust method exists for assessing calibration of past cloud radar data sets. Here, we investigate whether observations of microphysical processes of liquid clouds such as the transition of cloud droplets to drizzle drops can be used to calibrate cloud radars. Specifically, we study the relationships between the radar reflectivity factor and three variables not affected by absolute radar calibration: the skewness of the radar Doppler spectrum (γ), the radar mean Doppler velocity (W), and the liquid water path (LWP). We identify reference points of these relationships and evaluate their potential for radar calibration. For γ and W, we use box model simulations to determine typical radar reflectivity values for these reference points. We apply the new methods to observations at the Atmospheric Radiation Measurement (ARM) sites North Slope of Alaska (NSA) and Oliktok Point (OLI) in 2016 using two 35 GHz Ka-band ARM Zenith Radars (KAZR). For periods with a sufficient number of liquid cloud observations, we find that the methods are robust enough for cloud radar calibration, with the LWP-based method performing best. We estimate that in 2016, the radar reflectivity at NSA was about 1 ± 1 dB too low, but stable. For OLI, we identify serious problems with maintaining an accurate calibration including a sudden decrease of 5 to 7 dB in June 2016.







2021 ◽  
Vol 11 (1) ◽  
pp. 409
Author(s):  
Jaejoong Lee ◽  
Chiho Lee ◽  
Hyeon Hwi Lee ◽  
Kyung Tae Park ◽  
Hyun-Kyo Jung ◽  
...  

A new line-of-sight (LOS) decision algorithm applicable to simulation of electronic warfare (EW) is developed. For accurate simulation, the digital terrain elevation data (DTED) of the region to be analyzed must be reflected in the simulation, and millions of datasets are necessary in the EW environment. In order to obtain real-time results in such an environment, a technology that determines line-of-sight (LOS) quickly and accurately is very important. In this paper, a novel algorithm is introduced for determining LOS that can be applied in an EW environment with three-dimensional (3D) DTED. The proposed method shows superior performance as compared with the simplest point-to-point distance calculation method and it is also 50% faster than the conventional interpolation method. The DTED used in this paper is the data applied as level 0 for the Republic of Korea, and the decision of the LOS at approximately 1.8 million locations viewed by a reconnaissance plane flying 10 km above the ground is determined within 0.026 s.



Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 63
Author(s):  
Sidou Zhang ◽  
Shiyin Liu ◽  
Tengfei Zhang

By using products of the cloud model, National Centers for Environmental Prediction (NCEP) Final Operational Global Analysis (FNL) reanalysis data, and Doppler weather radar data, the mesoscale characteristics, microphysical structure, and mechanism of two hail cloud systems which occurred successively within 24 h in southeastern Yunnan have been analyzed. The results show that under the influence of two southwest jets in front of the south branch trough (SBT) and the periphery of the western Pacific subtropical high (WPSH), the northeast-southwest banded echoes affect the southeastern Yunnan of China twice. Meanwhile, the local mesoscale radial wind convergence and uneven wind speed lead to the intense development of convective echoes and the occurrence of hail. The simulated convective cloud bands are similar to the observation. The high-level mesoscale convergence line leads to the development of convective cloud bands. The low-level wind direction or wind speed convergence and the high-level wind speed divergence form a deep tilted updraft, with the maximum velocity of 15 m·s−1 at the −40~−10 °C layer, resulting in the intense development of local convective clouds. The hail embryos form through the conversion or collision growth of cloud water and snowflakes and have little to do with rain and ice crystals. Abundant cloud water, especially the accumulation region of high supercooled water (cloud water) near the 0 °C layer, is the key to the formation of hail embryos, in which qc is up to 1.92 g·kg−1 at the −4~−2 °C layer. The hail embryos mainly grow by collision-coalescence (collision-freezing) with cloud water (supercooled cloud drops) and snow crystal riming.



2014 ◽  
Vol 53 (8) ◽  
pp. 2017-2033 ◽  
Author(s):  
Vivek N. Mahale ◽  
Guifu Zhang ◽  
Ming Xue

AbstractThe three-body scatter signature (TBSS) is a radar artifact that appears downrange from a high-radar-reflectivity core in a thunderstorm as a result of the presence of hailstones. It is useful to identify the TBSS artifact for quality control of radar data used in numerical weather prediction and quantitative precipitation estimation. Therefore, it is advantageous to develop a method to automatically identify TBSS in radar data for the above applications and to help identify hailstones within thunderstorms. In this study, a fuzzy logic classification algorithm for TBSS identification is developed. Polarimetric radar data collected by the experimental S-band Weather Surveillance Radar-1988 Doppler (WSR-88D) in Norman, Oklahoma (KOUN), are used to develop trapezoidal membership functions for the TBSS class of radar echo within a hydrometeor classification algorithm (HCA). Nearly 3000 radar gates are removed from 50 TBSSs to develop the membership functions from the data statistics. Five variables are investigated for the discrimination of the radar echo: 1) horizontal radar reflectivity factor ZH, 2) differential reflectivity ZDR, 3) copolar cross-correlation coefficient ρhv, 4) along-beam standard deviation of horizontal radar reflectivity factor SD(ZH), and 5) along-beam standard deviation of differential phase SD(ΦDP). These membership functions are added to an HCA to identify TBSSs. Testing is conducted on radar data collected by dual-polarization-upgraded operational WSR-88Ds from multiple severe-weather events, and results show that automatic identification of the TBSS through the enhanced HCA is feasible for operational use.



2020 ◽  
Vol 13 (12) ◽  
pp. 6853-6875
Author(s):  
Felipe Toledo ◽  
Julien Delanoë ◽  
Martial Haeffelin ◽  
Jean-Charles Dupont ◽  
Susana Jorquera ◽  
...  

Abstract. This article presents a new cloud radar calibration methodology using solid reference reflectors mounted on masts, developed during two field experiments held in 2018 and 2019 at the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA) atmospheric observatory, located in Palaiseau, France, in the framework of the Aerosol Clouds Trace gases Research InfraStructure version 2 (ACTRIS-2) research and innovation program. The experimental setup includes 10 and 20 cm triangular trihedral targets installed at the top of 10 and 20 m masts, respectively. The 10 cm target is mounted on a pan-tilt motor at the top of the 10 m mast to precisely align its boresight with the radar beam. Sources of calibration bias and uncertainty are identified and quantified. Specifically, this work assesses the impact of receiver compression, temperature variations inside the radar, frequency-dependent losses in the receiver's intermediate frequency (IF), clutter and experimental setup misalignment. Setup misalignment is a source of bias, previously undocumented in the literature, that can have an impact of the order of tenths of a decibel in calibration retrievals of W-band radars. A detailed analysis enabled the quantification of the importance of each uncertainty source to the final cloud radar calibration uncertainty. The dominant uncertainty source comes from the uncharacterized reference target which reached 2 dB. Additionally, the analysis revealed that our 20 m mast setup with an approximate alignment approach is preferred to the 10 m mast setup with the motor-driven alignment system. The calibration uncertainty associated with signal-to-clutter ratio of the former is 10 times smaller than for the latter. Following the proposed methodology, it is possible to reduce the added contribution from all uncertainty terms, excluding the target characterization, down to 0.4 dB. Therefore, this procedure should enable the achievement of calibration uncertainties under 1 dB when characterized reflectors are available. Cloud radar calibration results are found to be repeatable when comparing results from a total of 18 independent tests. Once calibrated, the cloud radar provides valid reflectivity values when sampling midtropospheric clouds. Thus, we conclude that the method is repeatable and robust, and that the uncertainties are precisely characterized. The method can be implemented under different configurations as long as the proposed principles are respected. It could be extended to reference reflectors held by other lifting devices such as tethered balloons or unmanned aerial vehicles.



Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 509
Author(s):  
Dipayan Mitra ◽  
Aranee Balachandran ◽  
Ratnasingham Tharmarasa

Airborne angle-only sensors can be used to track stationary or mobile ground targets. In order to make the problem observable in 3-dimensions (3-D), the height of the target (i.e., the height of the terrain) from the sea-level is needed to be known. In most of the existing works, the terrain height is assumed to be known accurately. However, the terrain height is usually obtained from Digital Terrain Elevation Data (DTED), which has different resolution levels. Ignoring the terrain height uncertainty in a tracking algorithm will lead to a bias in the estimated states. In addition to the terrain uncertainty, another common source of uncertainty in angle-only sensors is the sensor biases. Both these uncertainties must be handled properly to obtain better tracking accuracy. In this paper, we propose algorithms to estimate the sensor biases with the target(s) of opportunity and algorithms to track targets with terrain and sensor bias uncertainties. Sensor bias uncertainties can be reduced by estimating the biases using the measurements from the target(s) of opportunity with known horizontal positions. This step can be an optional step in an angle-only tracking problem. In this work, we have proposed algorithms to pick optimal targets of opportunity to obtain better bias estimation and algorithms to estimate the biases with the selected target(s) of opportunity. Finally, we provide a filtering framework to track the targets with terrain and bias uncertainties. The Posterior Cramer–Rao Lower Bound (PCRLB), which provides the lower bound on achievable estimation error, is derived for the single target filtering with an angle-only sensor with terrain uncertainty and measurement biases. The effectiveness of the proposed algorithms is verified by Monte Carlo simulations. The simulation results show that sensor biases can be estimated accurately using the target(s) of opportunity and the tracking accuracies of the targets can be improved significantly using the proposed algorithms when the terrain and bias uncertainties are present.



Sign in / Sign up

Export Citation Format

Share Document