scholarly journals Renal Diseases Associated with Hematologic Malignancies and Thymoma in the Absence of Renal Monoclonal Immunoglobulin Deposits

Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 710
Author(s):  
Antoine Morel ◽  
Marie-Sophie Meuleman ◽  
Anissa Moktefi ◽  
Vincent Audard

In addition to kidney diseases characterized by the precipitation and deposition of overproduced monoclonal immunoglobulin and kidney damage due to chemotherapy agents, a broad spectrum of renal lesions may be found in patients with hematologic malignancies. Glomerular diseases, in the form of paraneoplastic glomerulopathies and acute kidney injury with various degrees of proteinuria due to specific lymphomatous interstitial and/or glomerular infiltration, are two major renal complications observed in the lymphoid disorder setting. However, other hematologic neoplasms, including chronic lymphocytic leukemia, thymoma, myeloproliferative disorders, Castleman disease and hemophagocytic syndrome, have also been associated with the development of kidney lesions. These renal disorders require prompt recognition by the clinician, due to the need to implement specific treatment, depending on the chemotherapy regimen, to decrease the risk of subsequent chronic kidney disease. In the context of renal disease related to hematologic malignancies, renal biopsy remains crucial for accurate pathological diagnosis, with the aim of optimizing medical care for these patients. In this review, we provide an update on the epidemiology, clinical presentation, pathophysiological processes and diagnostic strategy for kidney diseases associated with hematologic malignancies outside the spectrum of monoclonal gammopathy of renal significance.

2021 ◽  
Vol 8 ◽  
Author(s):  
Jianwen Yu ◽  
Danli Xie ◽  
Naya Huang ◽  
Qin Zhou

Circular RNAs (circRNAs) are a novel type of non-coding RNAs that have aroused growing attention in this decade. They are widely expressed in eukaryotes and generally have high stability owing to their special closed-loop structure. Many circRNAs are abundant, evolutionarily conserved, and exhibit cell-type-specific and tissue-specific expression patterns. Mounting evidence suggests that circRNAs have regulatory potency for gene expression by acting as microRNA sponges, interacting with proteins, regulating transcription, or directly undergoing translation. Dysregulated expression of circRNAs were found in many pathological conditions and contribute to the pathogenesis and progression of various disorders, including renal diseases. Recent studies have revealed that circRNAs may serve as novel reliable biomarkers for the diagnosis and prognosis prediction of multiple kidney diseases, such as renal cell carcinoma (RCC), acute kidney injury (AKI), diabetic kidney disease (DKD), and other glomerular diseases. Furthermore, circRNAs expressed by intrinsic kidney cells are shown to play a substantial role in kidney injury, mostly reported in DKD and RCC. Herein, we review the biogenesis and biological functions of circRNAs, and summarize their roles as promising biomarkers and therapeutic targets in common kidney diseases.


2021 ◽  
Vol 17 ◽  
Author(s):  
Yuri Márcio Campos ◽  
André Luís Vieira Drumond ◽  
Mariane de Matos Gamonal ◽  
Milena Pereira Parreira ◽  
Ana Cristina Simões e Silva

Background: In pediatric patients, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection has been mostly associated with mild symptoms. However, as in adults, renal involvement has been reported in children and adolescents with Coronavirus Disease 2019 (COVID-19). Objective: This review aimed to report data about renal involvement in pediatric COVID-9. The focuses were on the pathophysiology of acute kidney injury in Pediatric Inflammatory Multisystem Syndrome Temporally Associated (PIMS-TS) with SARS-CoV-2 and the possible impact of SARS-CoV-2 infection upon kidney function, as well as data concerning patients with previous kidney diseases, including Nephrotic Syndrome and Chronic Renal Disease. The implications for COVID-19 outcome in pediatric patients were also discussed. Methods: This integrative review searched for articles on renal involvement in pediatric COVID-19 patients. The databases evaluated were PubMed and Scopus. Results: The emergence of PIMS-TS with SARS-CoV-2 has shown that pediatric patients are at risk of severe COVID-19, with multi-organ involvement and dysfunction. In addition to intense inflammation, several systems are affected in this syndrome, collectively creating a combination of factors that results in acute kidney injury. Several studies have proposed that kidney cells, including the podocytes, might be at risk of direct infection by SARS-CoV-2, as high levels of ACE2, the virus receptor, are expressed on the membrane of such cells. Some cases of glomerular diseases triggered by SARS-CoV-2 infection and relapses of previous renal diseases have been reported. Conclusion: Further studies are necessary to establish risk factors for renal involvement in pediatric COVID-19 and to predict disease outcome.


2014 ◽  
Vol 306 (4) ◽  
pp. F367-F378 ◽  
Author(s):  
Ruochen Che ◽  
Yanggang Yuan ◽  
Songming Huang ◽  
Aihua Zhang

Mitochondrial dysfunction has gained recognition as a contributing factor in many diseases. The kidney is a kind of organ with high energy demand, rich in mitochondria. As such, mitochondrial dysfunction in the kidney plays a critical role in the pathogenesis of kidney diseases. Despite the recognized importance mitochondria play in the pathogenesis of the diseases, there is limited understanding of various aspects of mitochondrial biology. This review examines the physiology and pathophysiology of mitochondria. It begins by discussing mitochondrial structure, mitochondrial DNA, mitochondrial reactive oxygen species production, mitochondrial dynamics, and mitophagy, before turning to inherited mitochondrial cytopathies in kidneys (inherited or sporadic mitochondrial DNA or nuclear DNA mutations in genes that affect mitochondrial function). Glomerular diseases, tubular defects, and other renal diseases are then discussed. Next, acquired mitochondrial dysfunction in kidney diseases is discussed, emphasizing the role of mitochondrial dysfunction in the pathogenesis of chronic kidney disease and acute kidney injury, as their prevalence is increasing. Finally, it summarizes the possible beneficial effects of mitochondrial-targeted therapeutic agents for treatment of mitochondrial dysfunction-mediated kidney injury-genetic therapies, antioxidants, thiazolidinediones, sirtuins, and resveratrol-as mitochondrial-based drugs may offer potential treatments for renal diseases.


2021 ◽  
Author(s):  
Mathilde Fedi ◽  
Mickaël Bobot ◽  
Julia Torrents ◽  
Pierre Gobert ◽  
Eric Magnant ◽  
...  

Abstract Background: Few data is available on the risk/benefit balance of native kidney biopsy (KB) in very elderly patients.Methods: Multicenter retrospective cohort study in the Aix-Marseille area: the results of KB and medical charts of all patients over 85 years biopsied between January 2010 and December 2018 were reviewed. Results: 104 patients were included. Median age was 87 years. Indications for KB were: acute kidney injury (AKI) in 69.2% of patients, nephrotic syndrome (NS) with AKI in 13.5%, NS without AKI in 12.5%, and proteinuria in 4.8%. Median serum creatinine was 262 mmol/L, 21% of patients required dialysis at the time of KB. Significant bleeding occurred in 7 (6.7%) patients, requiring blood cell transfusion in 4 (3.8%), and radiological embolization in 1 (1%). The most frequent pathological diagnoses were: non-diabetic glomerular diseases (29.8%, including pauci-immune crescentic glomerulonephritis in 9.6%), hypertensive nephropathy (27.9%), acute interstitial nephritis (16.3%), renal involvement of hematological malignancy (8.7%), and acute tubular necrosis (6.7%). After KB, 51 (49%) patients received a specific treatment: corticosteroids (41.3%), cyclophosphamide (6.7%), rituximab (6.7%), bortezomib (3.8%), other chemotherapies (3.8%). Median overall survival was 31 months. Median renal survival was higher in patients without AKI (p=0.007) or treated with corticosteroids (p=0.046). Dialysis-free survival censored for death was higher in patients without AKI (p=0.019), or treated (p=0.022), especially with corticosteroids (p=0.006).Conclusions: KB can reveal a diagnosis with therapeutic impact even in very elderly patients. Severe bleeding was not frequent in this cohort, but KB may have not been performed in more vulnerable patients.


2021 ◽  
pp. 353-382
Author(s):  
Gopesh K. Modi ◽  
Vivekanand Jha

Assessing renal function, Urinalysis, Proteinuria, Hematuria, Chyluria, Imaging in renal disease, Kidney biopsy, Acute Kidney Injury (AKI), Chronic Kidney Disease (CKD), Diabetic Nephropathy, End Stage Renal Disease and Dialysis, Kidney Transplantation, Glomerular diseases, Acute glomerulonephritis, Urinary schistosomiasis (bilharzia), Infections and Kidney Disease, Rapidly Progressive glomerulonephritis, Tubulointerstitial Disease, Urinary Tract Infection, Vesico-ureteric reflux, Renal Stones, Renal Disease in Pregnancy, Renal Artery Stenosis, Renal Mass, Inherited Renal Diseases


2021 ◽  
Vol 11 (8) ◽  
pp. 820
Author(s):  
Mengyuan Ge ◽  
Sandra Merscher ◽  
Alessia Fornoni

Although dyslipidemia is associated with chronic kidney disease (CKD), it is more common in nephrotic syndrome (NS), and guidelines for the management of hyperlipidemia in NS are largely opinion-based. In addition to the role of circulating lipids, an increasing number of studies suggest that intrarenal lipids contribute to the progression of glomerular diseases, indicating that proteinuric kidney diseases may be a form of “fatty kidney disease” and that reducing intracellular lipids could represent a new therapeutic approach to slow the progression of CKD. In this review, we summarize recent progress made in the utilization of lipid-modifying agents to lower renal parenchymal lipid accumulation and to prevent or reduce kidney injury. The agents mentioned in this review are categorized according to their specific targets, but they may also regulate other lipid-relevant pathways.


2019 ◽  
Author(s):  
Juan Jin ◽  
Jianguang Gong ◽  
Li Zhao ◽  
Yiwen Li ◽  
Qiang He

Abstract Background Urinary proteomics has been extensively applied to investigate renal diseases including acute kidney injury (AKI), chronic kidney disease (CKD), IgA nephropathy (IgAN) and diabetic CKD. However, differential urinary proteome studies have not been reported for multiple diseases. The present study was aimed to explore early clinical diagnosis biomarkers for patients with AKI, AKI+CKD, diabetic CKD, non-diabetic CKD with IgAN and non-diabetic CKD without IgAN. Methods Differentially expressed proteins (DEPs) were screened by iTRAQ labeling and 2-D LC-MS/MS. Bioinformatics analysis was performed by subsequent GO enrichment and KEGG pathway analysis. DEPs were authenticated by ELISA assay. Results 156, 156, 286, 187 and 184 differentially abundant proteins were identified in patients with AKI, AKI+CKD, diabetic CKD, and non-diabetic CKD with or without IgAN. Comparative analysis indicated that 34, 35 and 17 unique DEPs were found in AKI, AKI+CKD and CKD samples, respectively. 91 and 14 specific DEPs were screened out in diabetic CKD and non-diabetic CKD. In comparison with Non-diabetic CKD with IgAN (38 DEPs), 47 unique urinary proteins were found in Non-diabetic CKD without IgAN. Among these DEPs, urinary SAA1 and HGFAC were only unregulated in AKI and Non-diabetic CKD without IgAN implying that they might be employed as the potential indicators of the two diseases. C5, APOC1 and Reg3A upregulation was not exclusively expressed in each disease which suggested that they could not be used for biomarker to distinguish one disease from the other. Conclusion Collectively, this research contributes to the urinary biomarker discovery from multiple renal diseases.


2020 ◽  
Vol 21 (3) ◽  
pp. 1009
Author(s):  
Tian-Yu Lin ◽  
Yu-Hsiang Hsu

Acute kidney injury (AKI) causes over 1 million deaths worldwide every year. AKI is now recognized as a major risk factor in the development and progression of chronic kidney disease (CKD). Diabetes is the main cause of CKD as well. Renal fibrosis and inflammation are hallmarks in kidney diseases. Various cytokines contribute to the progression of renal diseases; thus, many drugs that specifically block cytokine function are designed for disease amelioration. Numerous studies showed IL-20 functions as a pro-inflammatory mediator to regulate cytokine expression in several inflammation-mediated diseases. In this review, we will outline the effects of pro-inflammatory cytokines in the pathogenesis of AKI and CKD. We also discuss the role of IL-20 in kidney diseases and provide a potential therapeutic approach of IL-20 blockade for treating renal diseases.


2020 ◽  
pp. 5049-5064
Author(s):  
Vivekanand Jha

Kidney diseases encountered in tropical areas are a mix of conditions that have a worldwide distribution and those that are secondary to factors unique to the tropics (e.g. climatic conditions, infectious agents, nephrotoxic plants, envenomations, and chemical toxins). Cultural factors, illiteracy, superstitions, living conditions, level of access to health care, and nutritional status also affect the nature and course of disease. Knowledge of such conditions and issues is important for medical professionals in all parts of the globe, as ease of travel means that individuals and practices are exported with increasing frequency. Glomerular diseases—there is a high prevalence of infection-related glomerulonephritis (e.g. quartan malarial, schistosomal, and filarial nephropathies) throughout the tropics, with the pattern of injury dependent upon the nature of the prevalent endemic infection in that region. Once established, the course of disease is rarely modified by treatment of underlying infection. Acute kidney injury (AKI)—there is a higher prevalence of community-acquired AKI in the tropics than elsewhere. Medical causes predominate, with diarrhoeal diseases, intravascular haemolysis due to glucose-6-phosphate dehydrogenase deficiency, ingestion of toxic plants, snake bites, insect stings, and locally prevalent infections being responsible for most cases. Falciparum malaria and leptospirosis are the most important infectious aetiologies. Use of indigenous herbs and chemicals by traditional healers (‘witch doctors’) are the most important toxic causes of AKI in sub-Saharan Africa. Chronic kidney disease (CKD)—although the contributions of diabetes and hypertension are growing, many cases are secondary to glomerular diseases, likely infection related, or have CKD of undetermined aetiology. Many of the latter are agriculture or farm workers presenting with chronic tubulointerstitial nephritis of unknown cause.


Author(s):  
M Adela Mansilla ◽  
Ramakrishna R Sompallae ◽  
Carla J Nishimura ◽  
Anne E Kwitek ◽  
Mycah J Kimble ◽  
...  

Abstract Background The clinical diagnosis of genetic renal diseases may be limited by the overlapping spectrum of manifestations between diseases or by the advancement of disease where clues to the original process are absent. The objective of this study was to determine whether genetic testing informs diagnosis and facilitates management of kidney disease patients. Methods We developed a comprehensive genetic testing panel (KidneySeq) to evaluate patients with various phenotypes including cystic diseases, congenital anomalies of the kidney and urinary tract (CAKUT), tubulointerstitial diseases, transport disorders and glomerular diseases. We evaluated this panel in 127 consecutive patients ranging in age from newborns to 81 years who had samples sent in for genetic testing. Results The performance of the sequencing pipeline for single-nucleotide variants was validated using CEPH (Centre de’Etude du Polymorphism) controls and for indels using Genome-in-a-Bottle. To test the reliability of the copy number variant (CNV) analysis, positive samples were re-sequenced and analyzed. For patient samples, a multidisciplinary review board interpreted genetic results in the context of clinical data. A genetic diagnosis was made in 54 (43%) patients and ranged from 54% for CAKUT, 53% for ciliopathies/tubulointerstitial diseases, 45% for transport disorders to 33% for glomerulopathies. Pathogenic and likely pathogenic variants included 46% missense, 11% nonsense, 6% splice site variants, 23% insertion–deletions and 14% CNVs. In 13 cases, the genetic result changed the clinical diagnosis. Conclusion Broad genetic testing should be considered in the evaluation of renal patients as it complements other tests and provides insight into the underlying disease and its management.


Sign in / Sign up

Export Citation Format

Share Document