scholarly journals Substantial Differences in the Subgingival Microbiome Measured by 16S Metagenomics According to Periodontitis Status in Older Women

2018 ◽  
Vol 6 (4) ◽  
pp. 58 ◽  
Author(s):  
Michael LaMonte ◽  
Robert Genco ◽  
Wei Zheng ◽  
Daniel McSkimming ◽  
Christopher Andrews ◽  
...  

Aging invokes physiological changes, such as immunosenescence and inflammation, that could increase host susceptibility to oral microbiome shifts that enable periodontitis progression in later life. At present, there is a dearth of studies specifically evaluating the oral microbiome and periodontitis in older adults. We used high-throughput untargeted sequencing methods and functional metagenomic analyses to assess and compare the subgingival biofilm of postmenopausal women (mean age 71 years) according to periodontitis status. Subgingival plaque samples were obtained from 15 postmenopausal women with no periodontitis, and from 15 women with severe periodontitis, determined by probing measures. The 16S rRNA gene (V1–V3 region) was sequenced on the 454 FLX platform. The PICRUSt technique was used to provide information on what the potential functional characteristics of microbiota might be in healthy, compared with diseased, periodontium. The subgingival microbiome associated with periodontitis showed clear differences to that associated with health. Of the 464 species identified, 22.8% had elevated abundance in disease, while only 6.3% had elevated abundance in health. Among the 12 most prevalent organisms in periodontitis, one-half have previously been recognized as periodontal pathogens by other investigators. The subgingival microbiome in periodontitis contained genes that could code for specific activities, including microbial mobility, synthesis of endotoxin, and proteolytic degradation. The healthy microbiome included genes that could code for sustaining microbial life, including encoding for transporters, glycolysis, gluconeogenesis, the Krebs cycle, and protein kinases. In the present study on postmenopausal women, aged 60 and older, the subgingival microbiome differed in composition and potential function between those with and without periodontitis. Studies of functional gene expression, such as transcriptomics, are needed to definitively identify the molecules carrying out functions associated with pathogenic subgingival complexes. This, in turn, could lead to identification of targets for enhanced management of periodontitis and, possibly, other diseases, in later life.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Michael J. LaMonte ◽  
Robert J. Genco ◽  
Michael J. Buck ◽  
Daniel I. McSkimming ◽  
Lu Li ◽  
...  

Abstract Background The extent to which the composition and diversity of the oral microbiome varies with age is not clearly understood. Methods The 16S rRNA gene of subgingival plaque in 1219 women, aged 53–81 years, was sequenced and its taxonomy annotated against the Human Oral Microbiome Database (v.14.5). Composition of the subgingival microbiome was described in terms of centered log(2)-ratio (CLR) transformed OTU values, relative abundance, and prevalence. Correlations between microbiota abundance and age were evelauted using Pearson Product Moment correlations. P-values were corrected for multiple testing using the Bonferroni method. Results Of the 267 species identified overall, Veillonella dispar was the most abundant bacteria when described by CLR OTU (mean 8.3) or relative abundance (mean 8.9%); whereas Streptococcus oralis, Veillonella dispar and Veillonella parvula were most prevalent (100%, all) when described as being present at any amount. Linear correlations between age and several CLR OTUs (Pearson r = − 0.18 to 0.18), of which 82 (31%) achieved statistical significance (P < 0.05). The correlations lost significance following Bonferroni correction. Twelve species that differed across age groups (each corrected P < 0.05); 5 (42%) were higher in women ages 50–59 compared to ≥70 (corrected P < 0.05), and 7 (48%) were higher in women 70 years and older. Conclusions We identified associations between several bacterial species and age across the age range of postmenopausal women studied. Understanding the functions of these bacteria could identify intervention targets to enhance oral health in later life.


2014 ◽  
Vol 81 (3) ◽  
pp. 1047-1058 ◽  
Author(s):  
Szymon P. Szafranski ◽  
Melissa L. Wos-Oxley ◽  
Ramiro Vilchez-Vargas ◽  
Ruy Jáuregui ◽  
Iris Plumeier ◽  
...  

ABSTRACTThe oral microbiome plays a key role for caries, periodontitis, and systemic diseases. A method for rapid, high-resolution, robust taxonomic profiling of subgingival bacterial communities for early detection of periodontitis biomarkers would therefore be a useful tool for individualized medicine. Here, we used Illumina sequencing of the V1-V2 and V5-V6 hypervariable regions of the 16S rRNA gene. A sample stratification pipeline was developed in a pilot study of 19 individuals, 9 of whom had been diagnosed with chronic periodontitis. Five hundred twenty-three operational taxonomic units (OTUs) were obtained from the V1-V2 region and 432 from the V5-V6 region. Key periodontal pathogens likePorphyromonas gingivalis,Treponema denticola, andTannerella forsythiacould be identified at the species level with both primer sets. Principal coordinate analysis identified two outliers that were consistently independent of the hypervariable region and method of DNA extraction used. The linear discriminant analysis (LDA) effect size algorithm (LEfSe) identified 80 OTU-level biomarkers of periodontitis and 17 of health. Health- and periodontitis-related clusters of OTUs were identified using a connectivity analysis, and the results confirmed previous studies with several thousands of samples. A machine learning algorithm was developed which was trained on all but one sample and then predicted the diagnosis of the left-out sample (jackknife method). Using a combination of the 10 best biomarkers, 15 of 17 samples were correctly diagnosed. Training the algorithm on time-resolved community profiles might provide a highly sensitive tool to detect the onset of periodontitis.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Ya-Qiong Zhao ◽  
Ying-Hui Zhou ◽  
Jie Zhao ◽  
Yao Feng ◽  
Zheng-Rong Gao ◽  
...  

Objective. Periodontitis is an inflammatory disease of microbial etiology caused primarily by dysbiosis of the oral microbiota. Our aim was to compare variations in the composition of the oral microbiomes of youths with severe periodontitis according to gender. Methods. Subgingival plaque samples collected from 17 patients with severe periodontitis (11 males and 6 females) were split for 16S rRNA gene sequencing. The composition, α-diversity, and β-diversity of the patients’ oral microbiomes were compared between the males and the females. Linear discriminant analysis effect size (LEfSe) was used to analyze the specific taxa enriched in the two groups. Functional profiles (KEGG pathways) were obtained using PICRUSt based on 16S rRNA gene sequencing data. Results. The Chao1 index and phylogenetic diversity whole tree were significantly higher in males than in females. The Simpson and Shannon indices were not significantly different between the two groups. β-Diversity suggested that the samples were reasonably divided into groups. The Kruskal-Wallis test based on the relative abundance of species, combined with the LEfSe analysis showed that the dominant bacteria in males were Pseudomonas and Papillibacter, whereas the dominant bacteria in women were Fusobacteriales and Tannerella. KEGG analysis predicted that the variation in the oral microbiome may be related to the immune system in women, whereas immune system diseases were the dominant pathway in men. Conclusion. We found sex-specific differences in the oral microbiome in a sample of youths with severe periodontitis. The differences may be related to changes in immune homeostasis and lead to a better understanding of periodontitis.


2021 ◽  
Vol 9 (8) ◽  
pp. 1657
Author(s):  
Anders Esberg ◽  
Linda Johansson ◽  
Ingegerd Johansson ◽  
Solbritt Rantapää Dahlqvist

Rheumatoid arthritis (RA) is the most common autoimmune inflammatory disease, and single periodontitis-associated bacteria have been suggested in disease manifestation. Here, the oral microbiota was characterized in relation to the early onset of RA (eRA) taking periodontal status into consideration. 16S rRNA gene amplicon sequencing of saliva bacterial DNA from 61 eRA patients without disease-modifying anti-rheumatic drugs and 59 matched controls was performed. Taxonomic classification at 98.5% was conducted against the Human Oral Microbiome Database, microbiota functions were predicted using PICRUSt, and periodontal status linked from the Swedish quality register for clinically assessed caries and periodontitis. The participants were classified into three distinct microbiota-based cluster groups with cluster allocation differences by eRA status. Independently of periodontal status, eRA patients had enriched levels of Prevotella pleuritidis, Treponema denticola, Porphyromonas endodontalis and Filifactor alocis species and in the Porphyromonas and Fusobacterium genera and functions linked to ornithine metabolism, glucosylceramidase, beta-lactamase resistance, biphenyl degradation, fatty acid metabolism and 17-beta-estradiol-17-dehydrogenase metabolism. The results support a deviating oral microbiota composition already in eRA patients compared with healthy controls and highlight a panel of oral bacteria that may be useful in eRA risk assessment in both periodontally healthy and diseased persons.


2021 ◽  
Vol 9 (6) ◽  
pp. 1307
Author(s):  
Sebastian Böttger ◽  
Silke Zechel-Gran ◽  
Daniel Schmermund ◽  
Philipp Streckbein ◽  
Jan-Falco Wilbrand ◽  
...  

Severe odontogenic abscesses are regularly caused by bacteria of the physiological oral microbiome. However, the culture of these bacteria is often prone to errors and sometimes does not result in any bacterial growth. Furthermore, various authors found completely different bacterial spectra in odontogenic abscesses. Experimental 16S rRNA gene next-generation sequencing analysis was used to identify the microbiome of the saliva and the pus in patients with a severe odontogenic infection. The microbiome of the saliva and the pus was determined for 50 patients with a severe odontogenic abscess. Perimandibular and submandibular abscesses were the most commonly observed diseases at 15 (30%) patients each. Polymicrobial infections were observed in 48 (96%) cases, while the picture of a mono-infection only occurred twice (4%). On average, 31.44 (±12.09) bacterial genera were detected in the pus and 41.32 (±9.00) in the saliva. In most cases, a predominantly anaerobic bacterial spectrum was found in the pus, while saliva showed a similar oral microbiome to healthy individuals. In the majority of cases, odontogenic infections are polymicrobial. Our results indicate that these are mainly caused by anaerobic bacterial strains and that aerobic and facultative anaerobe bacteria seem to play a more minor role than previously described by other authors. The 16S rRNA gene analysis detects significantly more bacteria than conventional methods and molecular methods should therefore become a part of routine diagnostics in medical microbiology.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Isamu Kado ◽  
Junzo Hisatsune ◽  
Keiko Tsuruda ◽  
Kotaro Tanimoto ◽  
Motoyuki Sugai

AbstractFixed orthodontic appliances are common and effective tools to treat malocclusion. Adverse effects of these appliances, such as dental caries and periodontitis, may be associated with alteration of the microbiome. This study investigated the impact of these appliances on the dynamics of the oral microbiome. Seventy-one patients were selected. Supragingival plaque samples were collected before placement (T0) and six months after placement (T1). Saliva samples were collected at T0 and T1, and then when appliance removal (T2). Microbial DNA was analyzed by 16S rRNA meta-sequencing. The diversity analysis indicated dynamic changes in the structure of the oral microbiome. Taxonomic analysis at phylum level showed a significant increase in Bacteroidetes and Saccharibacteria (formally TM7) and decrease in Proteobacteria and Actinobacteria over time, in both plaque and saliva. Genus level analysis of relative abundance indicated a significant increase in anaerobic and facultative anaerobes in both plaque and saliva. Fixed orthodontic appliances induced measurable changes in the oral microbiome. This was characterized by an increase in relative abundance of obligate anaerobes, including periodontal pathogens. It can be concluded that this dysbiosis induced by fixed orthodontic appliances is likely to represent a transitional stage in the shift in microbiome from healthy to periodontitis.


2021 ◽  
pp. 1-7
Author(s):  
Talha Demirci ◽  
Aysun Oraç ◽  
Kübra Aktaş ◽  
Enes Dertli ◽  
Ismail Akyol ◽  
...  

Abstract Our objective was to analyze the diversity of the microbiota over 180 d of ripening of eight batches of artisanal goatskin Tulum cheeses by culture-dependent and culture-independent (PCR-DGGE) methods. V3 region of the bacterial 16S rRNA gene was amplified with the PCR after direct DNA isolation from the cheese samples. Nine different species and five genera were determined by culturing, while 11 species were identified in the PCR-DGGE technique. This diversity revealed the uniqueness of artisanal cheese varieties. The dominant genera in all the cheese samples were composed of Enterococcus species. The culture-dependent method revealed five genera (Enterococcus,Bacillus,Lactococcus,Lactobacillus, Sphingomonas) while three genera (Enterococcus, Streptococcus, Lactococcus) were detected in the culture-independent method. It was concluded that combining the two methods is important for characterizing the whole microbiota of the Tulum cheese varieties produced in the Anamur region.


2021 ◽  
Author(s):  
Giuseppina Campisciano ◽  
Mariachiara Quadrifoglio ◽  
Manola Comar ◽  
Francesco De Seta ◽  
Nunzia Zanotta ◽  
...  

The sterile-womb dogma in uncomplicated pregnancy has been lively debated. Data regarding the in utero microbiome environment are based mainly on studies performed at the time of delivery. Aim: To determine whether human placenta and amniotic fluid are populated by a bacterial microbiota in the first and second trimesters of pregnancy. Materials & methods: We analyzed by next-generation sequencing method 24 and 29 samples from chorionic villus sampling (CVS) and amniocentesis (AC), respectively. The V3 region of the 16S rRNA gene was sequenced. Results: 37.5% of CVS and 14% of AC samples showed the presence of bacterial DNA. Conclusion: Our study suggests that bacterial DNA can be identified in the placenta and amniotic fluid during early prenatal life.


Author(s):  
Brook A. Niemiec ◽  
Jerzy Gawor ◽  
Shuiquan Tang ◽  
Aishani Prem ◽  
Janina A. Krumbeck

Abstract OBJECTIVE To compare the bacteriome of the oral cavity in healthy dogs and dogs with various stages of periodontal disease. ANIMALS Dogs without periodontal disease (n = 12) or with mild (10), moderate (19), or severe (10) periodontal disease. PROCEDURES The maxillary arcade of each dog was sampled with a sterile swab, and swabs were submitted for next-generation DNA sequencing targeting the V1–V3 region of the 16S rRNA gene. RESULTS 714 bacterial species from 177 families were identified. The 3 most frequently found bacterial species were Actinomyces sp (48/51 samples), Porphyromonas cangingivalis (47/51 samples), and a Campylobacter sp (48/51 samples). The most abundant species were P cangingivalis, Porphyromonas gulae, and an undefined Porphyromonas sp. Porphyromonas cangingivalis and Campylobacter sp were part of the core microbiome shared among the 4 groups, and P gulae, which was significantly enriched in dogs with severe periodontal disease, was part of the core microbiome shared between all groups except dogs without periodontal disease. Christensenellaceae sp, Bacteroidales sp, Family XIII sp, Methanobrevibacter oralis, Peptostreptococcus canis, and Tannerella sp formed a unique core microbiome in dogs with severe periodontal disease. CONCLUSIONS AND CLINICAL RELEVANCE Results highlighted that in dogs, potential pathogens can be common members of the oral cavity bacteriome in the absence of disease, and changes in the relative abundance of certain members of the bacteriome can be associated with severity of periodontal disease. Future studies may aim to determine whether these changes are the cause or result of periodontal disease or the host immune response.


2021 ◽  
Author(s):  
Alba Regueira-Iglesias ◽  
Lara Vazquez-Gonzalez ◽  
Carlos Balsa-Castro ◽  
Triana Blanco-Pintos ◽  
Victor Manuel Arce ◽  
...  

This in silico investigation aimed to: 1) evaluate a set of primer pairs with high coverage, including those most commonly used in the literature, to find the different oral species with 16S rRNA gene amplicon similarity/identity (ASI) values ≥97%; and 2) identify oral species that may be erroneously clustered in the same operational taxonomic unit (OTU) and ascertain whether they belong to distinct genera or other higher taxonomic ranks. Thirty-nine primer pairs were employed to obtain amplicon sequence variants (ASVs) from the complete genomes of 186 bacterial and 135 archaeal species. For each primer, ASVs without mismatches were aligned using BLASTN and their similarity values were obtained. Finally, we selected ASVs from different species with an ASI value ≥97% that were covered 100% by the query sequences. For each primer, the percentage of species-level coverage with no ASI≥97% (SC-NASI≥97%) was calculated. Based on the SC-NASI≥97% values, the best primer pairs were OP_F053-KP_R020 for bacteria (65.05%), KP_F018-KP_R002 for archaea (51.11%), and OP_F114-KP_R031 for bacteria and archaea together (52.02%). Eighty percent of the oral-bacteria and oral-archaea species shared an ASI≥97% with at least one other taxa, including Campylobacter, Rothia, Streptococcus, and Tannerella, which played conflicting roles in the oral microbiota. Moreover, around a quarter and a third of these two-by-two similarity relationships were between species from different bacteria and archaea genera, respectively. Furthermore, even taxa from distinct families, orders, and classes could be grouped in the same cluster. Consequently, irrespective of the primer pair used, OTUs constructed with a 97% similarity provide an inaccurate description of oral-bacterial and oral-archaeal species, greatly affecting microbial diversity parameters. As a result, clustering by OTUs impacts the credibility of the associations between some oral species and certain health and disease conditions. This limits significantly the comparability of the microbial diversity findings reported in oral microbiome literature.


Sign in / Sign up

Export Citation Format

Share Document