scholarly journals Individual Tree Crown Delineation for the Species Classification and Assessment of Vital Status of Forest Stands from UAV Images

Drones ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 77
Author(s):  
Anastasiia Safonova ◽  
Yousif Hamad ◽  
Egor Dmitriev ◽  
Georgi Georgiev ◽  
Vladislav Trenkin ◽  
...  

Monitoring the structure parameters and damage to trees plays an important role in forest management. Remote-sensing data collected by an unmanned aerial vehicle (UAV) provides valuable resources to improve the efficiency of decision making. In this work, we propose an approach to enhance algorithms for species classification and assessment of the vital status of forest stands by using automated individual tree crowns delineation (ITCD). The approach can be potentially used for inventory and identifying the health status of trees in regional-scale forest areas. The proposed ITCD algorithm goes through three stages: preprocessing (contrast enhancement), crown segmentation based on wavelet transformation and morphological operations, and boundaries detection. The performance of the ITCD algorithm was demonstrated for different test plots containing homogeneous and complex structured forest stands. For typical scenes, the crown contouring accuracy is about 95%. The pixel-by-pixel classification is based on the ensemble supervised classification method error correcting output codes with the Gaussian kernel support vector machine chosen as a binary learner. We demonstrated that pixel-by-pixel species classification of multi-spectral images can be performed with a total error of about 1%, which is significantly less than by processing RGB images. The advantage of the proposed approach lies in the combined processing of multispectral and RGB photo images.

2019 ◽  
Vol 11 (24) ◽  
pp. 2948 ◽  
Author(s):  
Hoang Minh Nguyen ◽  
Begüm Demir ◽  
Michele Dalponte

Tree species classification at individual tree crowns (ITCs) level, using remote-sensing data, requires the availability of a sufficient number of reliable reference samples (i.e., training samples) to be used in the learning phase of the classifier. The classification performance of the tree species is mainly affected by two main issues: (i) an imbalanced distribution of the tree species classes, and (ii) the presence of unreliable samples due to field collection errors, coordinate misalignments, and ITCs delineation errors. To address these problems, in this paper, we present a weighted Support Vector Machine (wSVM)-based approach for the detection of tree species at ITC level. The proposed approach initially extracts (i) different weights associated to different classes of tree species, to mitigate the effect of the imbalanced distribution of the classes; and (ii) different weights associated to different training samples according to their importance for the classification problem, to reduce the effect of unreliable samples. Then, in order to exploit different weights in the learning phase of the classifier a wSVM algorithm is used. The features to characterize the tree species at ITC level are extracted from both the elevation and intensity of airborne light detection and ranging (LiDAR) data. Experimental results obtained on two study areas located in the Italian Alps show the effectiveness of the proposed approach.


Author(s):  
Michele Dalponte ◽  
Lorenzo Frizzera ◽  
Damiano Gianelle

An international data science challenge, called NEON NIST data science evaluation, was set up in autumn 2017 with the goal to improve the use of remote sensing data in ecological applications. The competition was divided into three tasks: 1) segmentation of tree crowns; 2) data alignment; and 3) tree species classification. In this paper the methods and results of team FEM in the NEON NIST data science evaluation challenge are presented. The individual tree crown (ITC) segmentation (Task 1 of the challenge) was done using a region growing method applied to a near-infrared band of the hyperspectral images. The optimization of the parameters of the segmentation algorithm was done in a supervised way on the basis of the Jaccard score using the training set provided by the organizers. The alignment (Task 2) between the segmented ITCs and the ground measured trees was done using an Euclidean distance among the position, the height, and the crown radius of the ITCs and the ground trees. The classification (Task 3) was performed using a Support Vector Machine classifier applied to a selection of the hyperspectral bands. The selection of the bands was done using a Sequential Forward Floating Selection method and the Jeffries Matusita distance. The results in the three tasks were very promising: team FEM ranked first in Task 1 and 2, and second in Task 3. The segmentation results showed that the proposed approach segmented both small and large crowns. The alignment was correctly done for all the test samples. The classification results were good, even if the accuracy was biased towards the most represented species.


2018 ◽  
Author(s):  
Michele Dalponte ◽  
Lorenzo Frizzera ◽  
Damiano Gianelle

An international data science challenge, called NEON NIST data science evaluation, was set up in autumn 2017 with the goal to improve the use of remote sensing data in ecological applications. The competition was divided into three tasks: 1) segmentation of tree crowns; 2) data alignment; and 3) tree species classification. In this paper the methods and results of team FEM in the NEON NIST data science evaluation challenge are presented. The individual tree crown (ITC) segmentation (Task 1 of the challenge) was done using a region growing method applied to a near-infrared band of the hyperspectral images. The optimization of the parameters of the segmentation algorithm was done in a supervised way on the basis of the Jaccard score using the training set provided by the organizers. The alignment (Task 2) between the segmented ITCs and the ground measured trees was done using an Euclidean distance among the position, the height, and the crown radius of the ITCs and the ground trees. The classification (Task 3) was performed using a Support Vector Machine classifier applied to a selection of the hyperspectral bands. The selection of the bands was done using a Sequential Forward Floating Selection method and the Jeffries Matusita distance. The results in the three tasks were very promising: team FEM ranked first in Task 1 and 2, and second in Task 3. The segmentation results showed that the proposed approach segmented both small and large crowns. The alignment was correctly done for all the test samples. The classification results were good, even if the accuracy was biased towards the most represented species.


Author(s):  
B. Hu ◽  
Q. Li

Abstract. The objective of this study was to explore the use of multi-source remotely sensed data for individual tree species. To achieve this, a neutrosophic logic-based method was developed for tree species classification using the combined spectral, textural and structural information derived from WorldView-2 (WV-2) multispectral bands, WV-2 panchromatic band, and LiDAR (Light Detection And Ranging)-derived canopy height model (CHM), respectively. The developed method was tested on the data obtained over the Keele campus, York University, Toronto Canada and the KNN (K Nearest Neighbour) classification method. Twenty-one spectral, three textural and three structural features were used to classify five species (Norway maple, honey locust, Austrian pine, blue spruce, and white spruce). For this study, 522 trees were used for training and 223 for testing. The overall classification accuracy obtained by the proposed method was 0.82. It was significantly improved compared with the KNN (0.73), weighted KNN (0.76), and fuzzy KNN (0.75) methods. In addition, Dempster-Shafer (DS) theory was explored to perform information fusion at the decision level in comparison to that at the feature level. The accuracies obtained by the fusion at the decision level were generally lower than those at the feature level. Even though promising results based on the neutrosophic logic were obtained during this proof-concept stage, studies are underway to perform more tests with a large number of tree crowns and more species and exploit other classification methods, such as support vector machine.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 137-145
Author(s):  
Yubin Xia ◽  
Dakai Liang ◽  
Guo Zheng ◽  
Jingling Wang ◽  
Jie Zeng

Aiming at the irregularity of the fault characteristics of the helicopter main reducer planetary gear, a fault diagnosis method based on support vector data description (SVDD) is proposed. The working condition of the helicopter is complex and changeable, and the fault characteristics of the planetary gear also show irregularity with the change of working conditions. It is impossible to diagnose the fault by the regularity of a single fault feature; so a method of SVDD based on Gaussian kernel function is used. By connecting the energy characteristics and fault characteristics of the helicopter main reducer running state signal and performing vector quantization, the planetary gear of the helicopter main reducer is characterized, and simultaneously couple the multi-channel information, which can accurately characterize the operational state of the planetary gear’s state.


Author(s):  
Karolina Parkitna ◽  
Grzegorz Krok ◽  
Stanisław Miścicki ◽  
Krzysztof Ukalski ◽  
Marek Lisańczuk ◽  
...  

Abstract Airborne laser scanning (ALS) is one of the most innovative remote sensing tools with a recognized important utility for characterizing forest stands. Currently, the most common ALS-based method applied in the estimation of forest stand characteristics is the area-based approach (ABA). The aim of this study was to analyse how three ABA methods affect growing stock volume (GSV) estimates at the sample plot and forest stand levels. We examined (1) an ABA with point cloud metrics, (2) an ABA with canopy height model (CHM) metrics and (3) an ABA with aggregated individual tree CHM-based metrics. What is more, three different modelling techniques: multiple linear regression, boosted regression trees and random forest, were applied to all ABA methods, which yielded a total of nine combinations to report. An important element of this work is also the empirical verification of the methods for estimating the GSV error for individual forest stand. All nine combinations of the ABA methods and different modelling techniques yielded very similar predictions of GSV for both sample plots and forest stands. The root mean squared error (RMSE) of estimated GSV ranged from 75 to 85 m3 ha−1 (RMSE% = 20.5–23.4 per cent) and from 57 to 64 m3 ha−1 (RMSE% = 16.4–18.3 per cent) for plots and stands, respectively. As a result of the research, it can be concluded that GSV modelling with the use of different ALS processing approaches and statistical methods leads to very similar results. Therefore, the choice of a GSV prediction method may be more determined by the availability of data and competences than by the requirement to use a particular method.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 208
Author(s):  
Javier Brugés Martelo ◽  
Jan Lundgren ◽  
Mattias Andersson

The manufacturing of high-quality extruded low-density polyethylene (PE) paperboard intended for the food packaging industry relies on manual, intrusive, and destructive off-line inspection by the process operators to assess the overall quality and functionality of the product. Defects such as cracks, pinholes, and local thickness variations in the coating can occur at any location in the reel, affecting the sealable property of the product. To detect these defects locally, imaging systems must discriminate between the substrate and the coating. We propose an active full-Stokes imaging polarimetry for the classification of the PE-coated paperboard and its substrate (before applying the PE coating) from industrially manufactured samples. The optical system is based on vertically polarized illumination and a novel full-Stokes imaging polarimetry camera system. From the various parameters obtained by polarimetry measurements, we propose implementing feature selection based on the distance correlation statistical method and, subsequently, the implementation of a support vector machine algorithm that uses a nonlinear Gaussian kernel function. Our implementation achieves 99.74% classification accuracy. An imaging polarimetry system with high spatial resolution and pixel-wise metrological characteristics to provide polarization information, capable of material classification, can be used for in-process control of manufacturing coated paperboard.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1105 ◽  
Author(s):  
Davide Astolfi ◽  
Francesco Castellani ◽  
Andrea Lombardi ◽  
Ludovico Terzi

Due to the stochastic nature of the source, wind turbines operate under non-stationary conditions and the extracted power depends non-trivially on ambient conditions and working parameters. It is therefore difficult to establish a normal behavior model for monitoring the performance of a wind turbine and the most employed approach is to be driven by data. The power curve of a wind turbine is the relation between the wind intensity and the extracted power and is widely employed for monitoring wind turbine performance. On the grounds of the above considerations, a recent trend regarding wind turbine power curve analysis consists of the incorporation of the main working parameters (as, for example, the rotor speed or the blade pitch) as input variables of a multivariate regression whose target is the power. In this study, a method for multivariate wind turbine power curve analysis is proposed: it is based on sequential features selection, which employs Support Vector Regression with Gaussian Kernel. One of the most innovative aspects of this study is that the set of possible covariates includes also minimum, maximum and standard deviation of the most important environmental and operational variables. Three test cases of practical interest are contemplated: a Senvion MM92, a Vestas V90 and a Vestas V117 wind turbines owned by the ENGIE Italia company. It is shown that the selection of the covariates depends remarkably on the wind turbine model and this aspect should therefore be taken in consideration in order to customize the data-driven monitoring of the power curve. The obtained error metrics are competitive and in general lower with respect to the state of the art in the literature. Furthermore, minimum, maximum and standard deviation of the main environmental and operation variables are abundantly selected by the feature selection algorithm: this result indicates that the richness of the measurement channels contained in wind turbine Supervisory Control And Data Acquisition (SCADA) data sets should be exploited for monitoring the performance as reliably as possible.


2021 ◽  
Vol 13 (1) ◽  
pp. 133
Author(s):  
Hao Sun ◽  
Yajing Cui

Downscaling microwave remotely sensed soil moisture (SM) is an effective way to obtain spatial continuous SM with fine resolution for hydrological and agricultural applications on a regional scale. Downscaling factors and functions are two basic components of SM downscaling where the former is particularly important in the era of big data. Based on machine learning method, this study evaluated Land Surface Temperature (LST), Land surface Evaporative Efficiency (LEE), and geographical factors from Moderate Resolution Imaging Spectroradiometer (MODIS) products for downscaling SMAP (Soil Moisture Active and Passive) SM products. This study spans from 2015 to the end of 2018 and locates in the central United States. Original SMAP SM and in-situ SM at sparse networks and core validation sites were used as reference. Experiment results indicated that (1) LEE presented comparative performance with LST as downscaling factors; (2) adding geographical factors can significantly improve the performance of SM downscaling; (3) integrating LST, LEE, and geographical factors got the best performance; (4) using Z-score normalization or hyperbolic-tangent normalization methods did not change the above conclusions, neither did using support vector regression nor feed forward neural network methods. This study demonstrates the possibility of LEE as an alternative of LST for downscaling SM when there is no available LST due to cloud contamination. It also provides experimental evidence for adding geographical factors in the downscaling process.


Sign in / Sign up

Export Citation Format

Share Document